首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
在Gleeble3500热力模拟试验机上对800H合金进行高温单道次压缩实验,结合OM和TEM等表征手段,研究了该合金在变形温度1 000~1 150℃和应变速率0.01~1s-1条件下的热变形行为。结果表明,动态再结晶行为更易发生在较低应变速率和高变形温度条件下,变形过程中动态再结晶形核机制主要包含晶粒碎化、晶界迁移及亚结构合并;考虑应变量因素,建立应变量耦合的双曲正弦本构方程,利用此模型预测合金的流变应力。本构模型预测值与实验测得值之间的线性关系达至0.99648,且平均相对误差仅2.019%,说明这种应变量耦合型本构方程能较好的预测800H合金在实验条件内的流变应力。  相似文献   

2.
在变形温度为300~500℃,应变速率为0.01~10.0s~(-1)的条件下,通过Gleeble-1500热模拟试验机对3003铝合金进行高温等温压缩实验。结果表明,该合金在热变形过程中的峰值流变应力可用双曲正弦本构方程来描述,由本构方程计算获得模型的流变应力预测值和实测值的相对误差在±7%范围以内。根据热力学不可逆原理确定动态再结晶临界应变,建立动态再结晶开始时间与变形温度关系的RTT(Recrystallization Start Time)图,研究表明:动态再结晶开始时间随着应变速率的减小与变形温度的降低而增大,由流变应力曲线计算动态再结晶体积比例,其大小随变形温度的升高和应变速率的减小而增大,并获得3003铝合金动态再结晶体积分数数学模型。  相似文献   

3.
目的 研究316LN钢的高温变形行为,确定最佳加工区间并优化工艺参数。方法 利用Gleeble热模拟实验机在变形温度为1 000~1 150℃、应变速率为0.001~10 s-1条件下对316LN钢进行热压缩实验。根据实验数据分别绘制不同变形温度和不同应变速率下的流变应力曲线。在传统Arrhenius双曲正弦关系的基础上,考虑应变量的影响,通过五次多项式拟合建立316LN钢的改进型本构模型,基于动态材料模型及Prasad塑性失稳判据计算得到材料的能量耗散图和流变失稳图,将二者叠加得到316LN钢的热加工图。结果 流变应力曲线呈现典型的动态再结晶特征,且随着应变速率的增大和变形温度的升高,316LN钢的压缩应力逐渐减小,耦合应变量的本构模型预测值与实验值的相关系数达0.9888,吻合度较高。通过建立热加工图并对比金相组织发现,316LN钢在“安全区”能量耗散效率较大的区域更容易发生动态再结晶行为。结论 高变形温度、低应变速率条件更有利于软化机制的发生,改进型本构模型精度较高,可对316LN钢热变形过程中的流变应力进行准确预测。通过构建热加工图确定了316LN钢的最佳...  相似文献   

4.
在Gleeble-3500型热模拟试验机上对A100超高强度钢进行热压缩实验,获得了在变形温度为850~1200℃,应变速率为0.001~10s -1 以及变形程度为60%条件下的流变应力曲线,分析热压缩过程中摩擦和温升效应对流变应力的影响,修正了流变应力曲线;并在Arrhenius双曲正弦函数方程的基础上引入应变量参数构建了基于应变量耦合的唯象本构模型。结果表明:随着变形温度的降低或应变速率的增加,摩擦和温升效应对流变应力的影响逐渐显著;所建立的本构模型预测值与实验值的绝对平均相对误差为4.902%,相关系数为0.99,能够用于准确预测不同应变下的流变应力。  相似文献   

5.
采用Gleeble-3500型热模拟试验机对Ti-2.7Cu合金进行等温恒应变速率压缩实验,研究其在变形温度740~890℃,应变速率0.001~10s~(-1)范围内的热变形行为;并在Arrhenius型双曲正弦函数方程基础上引入应变量构建了基于应变补偿的本构模型,同时构建了基于PSO-BP神经网络的本构关系模型。结果表明:合金的流变应力对变形温度和应变速率较为敏感,变形温度升高和应变速率减小都会使流变应力降低;在高温和低应变速率条件下,流变曲线大多呈现稳态流动特征。经过误差计算得出,基于应变补偿的本构模型,预测值偏差在15%以内的数据点占85.28%;采用PSO-BP神经网络建立的本构模型,预测值偏差在15%以内的数据点占96.67%,PSO-BP神经网络模型具有更高的精度,能准确预测Ti-2.7Cu合金的高温流变应力。  相似文献   

6.
利用Gleeble-3500D型热模拟实验机进行等温压缩实验,系统研究一种新型热挤压态Ni-Co-Cr基粉末高温合金在变形温度为1020~1110℃、应变速率为10-3~1 s-1条件下的热压缩变形行为,对获得的流变应力曲线进行摩擦修正,利用摩擦修正后的数据分别建立合金的热压缩本构关系方程和考虑应变补偿的流变应力模型;同时,构建热加工图,并结合显微组织分析,优化合金的热变形工艺参数。结果表明:合金在热压缩过程中发生了明显的动态再结晶现象,流变应力随应变速率的降低或变形温度的升高而降低。利用所建立的考虑应变补偿的合金流变应力模型进行流变应力的预测,其预测值与实验摩擦修正值吻合良好。根据构建的热加工图并结合微观组织分析,提出了合金较合理的热加工参数:变形温度约为1076~1103℃、应变速率约为10-3~10-2.77 s-1。  相似文献   

7.
在变形温度为750~1000℃、应变速率为0.01~10 s-1条件下,对铸态BFe30-1-1铜镍合金进行了热压缩实验。综合分析摩擦和温升对合金流变应力的影响,利用修正后的流变应力曲线构建了BFe30-1-1铜镍合金的Arrhenius双曲正弦函数本构关系模型,基于动态材料模型构建合金的热加工图,研究合金热变形过程中的组织演变规律。结果表明:合金的峰值流变应力随着变形温度的降低或应变速率的增加而升高,摩擦和温升能够显著影响合金的真应力-真应变曲线,热变形过程中发生了动态再结晶,本研究构建的合金本构关系模型对峰值应力的预测值与修正后实验值的平均相对误差仅为3.77%,能够准确地预测合金在不同热变形条件下的流变应力。结合热加工图和微观组织分析,合金的较合理的热塑性变形工艺区间为变形温度900~1000℃、应变速率0.04~0.16 s-1,在该变形条件下热压缩后的样品可获得更多的动态再结晶组织。  相似文献   

8.
在变形温度为750~1000℃、应变速率为0.01~10 s^(-1)条件下,对铸态BFe30-1-1铜镍合金进行了热压缩实验。综合分析摩擦和温升对合金流变应力的影响,利用修正后的流变应力曲线构建了BFe30-1-1铜镍合金的Arrhenius双曲正弦函数本构关系模型,基于动态材料模型构建合金的热加工图,研究合金热变形过程中的组织演变规律。结果表明:合金的峰值流变应力随着变形温度的降低或应变速率的增加而升高,摩擦和温升能够显著影响合金的真应力-真应变曲线,热变形过程中发生了动态再结晶,本研究构建的合金本构关系模型对峰值应力的预测值与修正后实验值的平均相对误差仅为3.77%,能够准确地预测合金在不同热变形条件下的流变应力。结合热加工图和微观组织分析,合金的较合理的热塑性变形工艺区间为变形温度900~1000℃、应变速率0.04~0.16 s^(-1),在该变形条件下热压缩后的样品可获得更多的动态再结晶组织。  相似文献   

9.
利用Gleeble-3500热模拟试验机进行等温恒应变热压缩实验,以实验获得的数据为基础,研究Ti-22Al-24Nb-0.5Y合金流变行为,通过正交实验对影响合金的流变应力因素进行分析,并建立基于BP神经网络的合金高温本构关系模型。结果表明:影响合金流变应力的主要因素依次为应变速率、变形温度和应变量;Ti-22Al-24Nb-0.5Y合金在热变形时的流变应力对应变速率和变形温度都较为敏感。当变形温度较低,应变速率较高时,合金变形呈流变软化特征,当变形温度较高,应变速率较低时,合金变形趋向于稳态流动;利用BP神经网络建立的合金高温本构关系模型,具有较高的精度,其相关性系数达到0.9949,平均相对误差在3.23%,预测值偏差在10%以内的数据点达98.79%,该预测模型可作为Ti2AlNb基合金塑性成形过程有限元模拟的本构关系。  相似文献   

10.
对超高强双相钢DP1000进行单道次热模拟压缩实验,研究了其在950~1150℃和0.05~10 s~(-1)条件下的热变形行为,分析了变形温度和变形速率对流变应力的影响,建立了基于位错密度理论的热力学本构模型,确定了可表征微观硬化和软化机制的材料特征参数,量化了加工硬化、动态回复和动态再结晶对宏观力学行为的影响。结果表明:超高强双相钢DP1000的热变形应变速率ε?≤0.05 s~(-1)时以动态再结晶软化机制为主,应变速率ε?0.1 s~(-1)时以动态回复软化机制为主,应变速率0.05 s~(-1)ε?≤0.1 s~(-1)时由这两种软化机制共同作用。这个本构模型的预测值与实验值具有较高的一致性,能准确预测超高强双相钢DP1000在高温变形条件下的流变应力。  相似文献   

11.
采用Gleeble-3800型热模拟试验机,对Zirlo合金进行等温恒应变速率压缩实验,研究其在变形温度550~700℃,应变速率0.01~10 s^(-1)范围内的热变形行为;并在Arrhenius型双曲正弦函数方程基础上引入应变量,构建了基于应变补偿的Arrhenius本构模型,同时构建了基于位错密度演化加工硬化模型和基于唯象型的软化模型的分段唯象型本构模型。结果表明:Zirlo合金的流变应力随着温度的降低和应变速率的提高而升高,低应变速率下流变应力呈现更高的温度敏感性,流变应力曲线在不同变形条件下分别呈现加工硬化、动态回复、动态再结晶特征。经过误差分析可知,基于应变补偿的Arrhenius本构模型大部分预测值的误差均在15%以内,具有较高的准确性,而分段唯象型本构模型相对平均绝对误差最大值不超过3%,具有97%以上的准确率,可以很好地预测合金的应力-应变曲线,具有良好的拓展性,并且可初步判断曲线类型,具有良好的实用性。  相似文献   

12.
在Gleeble-3800热模拟试验机上对Nitronic60奥氏体不锈钢进行高温等温压缩实验,研究该材料在变形温度为950—1 200℃、应变速率为0.01—10 s-1、真应变量0.9等条件下的热变形行为,并观察了变形后的显微组织。研究结果表明:在热压缩过程中,流变应力随变形温度的升高而降低,随应变速率的升高而增加;当变形速率较低时,材料在变形温度范围内均发生了动态再结晶。采用双曲正弦模型建立了相应的热变形本构关系,其热变形激活能为425.542 k J/mol,高温压缩变形时,Z参数和流变应力方程分别为Z=εexp(425.542/RT)=3.495×1015[sinh(0.005 93σ)]5.55,ε=3.495×1015[sinh(0.005 93σ)]5.55exp[-525.524/(RT)]。  相似文献   

13.
在Gleeble-1500D热模拟试验机上,对Cu-2.0Ni-0.5Si-0.03P合金进行高温压缩实验,应变速率为0.01~5s-1、变形温度为600~800℃,对其高温等温压缩流变应力行为进行了研究.研究结果表明:随变形温度升高,合金的流变应力下降,随应变速率提高,流变应力增大.在应变温度为750、800℃时,合金热压缩变形流变应力出现了明显的峰值应力,表现为连续动态再结晶特征.可采用Zener-Hollomon参数的双曲正弦函数来描述Cu-2.0Ni-0.5Si-0.03P合金高温变形时的流变应力行为.从流变应力、应变速率和温度的相关性,得出了该合金高温热压缩变形时的应力指数n,应力参数α,结构因子A,热变形激活能Q和流变应力方程.合金动态再结晶的显微组织强烈受到变形温度的影响.  相似文献   

14.
Cu-2.32Ni-0.57Si-0.05P合金热压缩变形研究   总被引:1,自引:0,他引:1  
在Gleeble-1500D热模拟试验机上,对Cu-2.32Ni-0.57Si-0.05P合金在应变速率为0.01~5s-1、变形温度为600~800℃、最大变形程度为60%条件下,进行恒温压缩模拟实验研究.分析了实验合金在高温变形时的流变应力、应变速率及变形温度之间的关系,研究了变形温度对合金显微组织的影响.计算了合金高温热压缩变形时的应力指数n、应力参数α、结构因子A以及平均热变形激活能Q.结果表明:合金的流变应力随变形温度升高而降低,随应变速率提高而增大.热变形过程的流变应力可用双曲正弦本构关系来描述.当变形温度高于750℃时,合金流变曲线呈现出明显的动态再结晶特征,合金显微组织为完全的动态再结晶组织.合金的热加工宜在应变速率为0.1~1s-1、温度为700~800℃范围内进行.  相似文献   

15.
利用Gleeble-1500D热模拟试验机研究Ni-Cr-Mo系低合金SA508Gr.4N钢在变形温度为850~1200℃,应变速率为0.001~1 s-1,真应变为0.9条件下的等温热变形行为,建立包含动态回复和动态再结晶的基于物象的流变应力模型与动态再结晶晶粒尺寸模型,并提出避免粗大晶粒组织遗传性的适宜锻造工艺。结果表明:随着变形温度的升高,应变速率的降低,动态再结晶体积分数和晶粒尺寸逐渐增加;SA508Gr.4N钢的真应力-真应变曲线具有明显的不连续动态再结晶现象;通过实验值和模型预测值对比可得流变应力模型的相关系数(R)及平均相对误差(MRE)分别为0.998和4.76%,动态再结晶晶粒尺寸模型的相关系数(R)及平均相对误差(MRE)分别为0.991和8.69%,两个模型均具有较高的准确性。  相似文献   

16.
张鑫  张毅 《功能材料》2013,44(5):623-626,631
通过高温等温压缩试验,对Cu-Ni-Si-Ag合金在应变速率为0.01~5s-1、变形温度为600~800℃的动态再结晶行为以及组织转变进行了研究。结果表明,在应变温度为750、800℃时,合金热压缩变形流变应力出现了明显的峰值应力,表现为连续动态再结晶特征。同时从流变应力、应变速率和温度的相关性,得出了该合金高温热压缩变形时的热变形激活能Q和流变应力方程。并综合考虑应变速率与温度的影响,采用动态材料模型建立了该合金的热加工图,并利用热加工图分析了该合金不同区域的高温变性特征以及组织变化。  相似文献   

17.
目的 研究GH3028镍基合金动态再结晶过程中的晶粒尺寸变化情况,明晰微观组织形貌的演变规律。方法 利用DST3000PC型动态热模拟实验机,在温度为1 050~1 300℃、应变速率为1×10-3~1×10-1 s-1、最大应变量为58%的条件下对GH3028镍基合金进行热压缩实验,通过构建动态再结晶和晶粒尺寸演变数值计算模型并结合实验进行验证。结果 峰值应力随温度的上升而有所下降,在1050~1300℃温度范围内,温度越高,合金试样越容易趋于稳态,动态再结晶特点越为明显。通过对实验数据进行优化和拟合,根据峰值应力值计算出热变形激活能Q为516 kJ/mol,进而求解出热变形方程。建立动态再结晶模型及晶粒尺寸模型,观察动态再结晶过程中的微观组织,发现当温度、应变速率不变时,动态再结晶的体积分数随应变量的增大而增大。温度的提升会显著增大动态再结晶体积分数和动态再结晶晶粒尺寸。晶粒尺寸受温度和应变速率的双重影响逐渐趋于稳态变化。结论 通过对模型预测值与实际实验数据进行对比,发现该模型可以实现对晶粒尺寸变化的预测,模型预测平...  相似文献   

18.
李瑞卿  田保红  张毅  刘勇  刘平  许倩倩  段秋华 《功能材料》2013,(14):2036-2040,2046
Cu-Cr-Zr系合金是一类高强度高导电集成电路用引线框架铜合金。在Gleeble-1500D热模拟实验机上,采用等温压缩实验研究了Cu-Cr-Zr-Ce合金在变形温度为600~800℃、应变速率为0.01~5s-1条件下的流变应力的相互变化规律,测定了其真应力-应变曲线,并利用光学显微镜分析了合金在热压缩过程中的组织演变规律。结果表明,Cu-Cr-Zr-Ce合金的真应力-真应变曲线呈现典型的动态回复特征,其流变应力和峰值应力随变形温度的降低和应变速率的提高而增大;且变形温度越高,应变速率越小,合金越容易发生动态回复和再结晶。在上述实验基础上,基于流变应力、应变速率和温度的相关性,计算出了该合金热压缩变形时的热变形激活能Q,并建立了其等温压缩塑性变形过程的流变应力与变形温度和应变速率之间关系的本构方程。  相似文献   

19.
低碳钢奥氏体再结晶模型的建立   总被引:1,自引:0,他引:1  
为了描述低碳钢变形过程的组织演化,建立了一套完整的奥氏体动态再结晶、静态再结晶、亚动态再结晶模型.本文利用Gleeble试验机研究不同初始晶粒度、变形温度、应变和应变速率对奥氏体再结晶量和晶粒尺寸变化的影响.流变应力模型考虑了变形条件对模型系数的影响.利用测得的应力-应变曲线及晶粒度由多元非线性回归得出了奥氏体再结晶模型系数,并且由模型计算的峰值应变、稳定应变、硬化区流变应力、再结晶体积分数、晶粒尺寸和实际接近.  相似文献   

20.
7050铝合金热压缩变形的流变应力本构方程   总被引:10,自引:0,他引:10  
对7050铝合金在应变速率为0.01~10s-1、变形温度为250~450℃条件下的流变应力行为进行了实验研究.结果表明:7050铝合金热压缩变形中发生了明显的动态回复与动态再结晶,流变应力随应变速率的增加而增加,随温度的增加而降低;通过线性回归分析计算出7050材料的应变硬化指数n以及变形激活能Q,获得了7050铝合金高温条件下的流变应力本构方程.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号