首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了Al-Cu-Li-(0.35Mg)-(0.2In)合金的拉伸性能、时效析出相类型及其分布。T6峰时效时,Al-Cu-Li合金的时效析出相为T1(Al2CuLi)和?? (Al2Cu)相。添加0.2%In时,T6态时效早期形成许多方块状的立方相Al5Cu6Li2,且随时间延长其尺寸保持稳定;同时,可促进? ?相析出;相应合金的时效响应加速,强度提高。同时添加In和Mg可抑制Al5Cu6Li2相析出,但促进T1相析出。In和Mg的复合微合金化效果小于2050铝锂合金中Ag和Mg的复合微合金化效果,因而In+Mg复合微合金化铝锂合金T6态强度低于Ag+Mg复合微合金化的2050铝锂合金。T8态时效时,时效前预变形产生的位错抑制了In元素单独添加和In+Mg复合添加的微合金化效果。  相似文献   

2.
研究了Ce添加量分别为0.09%及0.23%的Al-4.15Cu-1.25Li-X高强铝锂合金薄板T6态时效(175℃时效)及T8态时效(5%冷轧预变形+155℃时效)时的微观组织和拉伸性能。结果表明,相比T6态时效,T8态时效时铝锂合金强度及伸长率均有所提高。T8态时效时,含0.23%Ce的铝锂合金强度及伸长率均低于Ce含量为0.09%的铝锂合金。Ce含量增加未改变铝锂合金中时效析出相的种类,主要强化相仍为T1相(Al_2CuLi)及θ'相(Al_2Cu),但其数量减少。微量Ce的添加可形成含Ce且富Cu的Al_8Cu_4Ce相粒子,这些粒子在均匀化及固溶处理时均难以完全溶解。Ce含量增加,导致固溶基体中Cu含量降低,时效时含Cu析出相T1相及θ'相含量减少,铝锂合金强度降低。  相似文献   

3.
比较研究了一种Mg、Ag、Zn多元复合微合金化铝锂合金等温T8时效及非等温(降温)T8时效时的微观组织与力学性能。结果表明,该铝锂合金主要时效强化相为T1相(Al_2Cu Li),同时还存在θ相(Al_2Cu)及δ相(Al_3Li)的补充强化作用。相比于等温T8时效而言,降温T8时效可在不降低延伸率的同时,提高铝锂合金的强度。另外,降温T8时效时T1相析出及生长速度较慢,而且峰时效时θ相及δ相含量较高,补充强化作用更大。  相似文献   

4.
采用金相显微镜、透射电镜、扫描电镜及拉伸性能在测试研究0.11%Ce(质量分数)添加对一种Al-Cu-Li系高强铝锂合金薄板T8态时效(5%冷轧预变形+155℃时效)组织和力学性能的影响。结果表明:0.11%Ce添加明显降低合金强度,但伸长率略有增加。微量Ce添加可细化铸态晶粒组织及固溶再结晶晶粒组织;而且微量Ce添加未改变铝锂合金中时效析出相的种类,主要强化相仍然为T1相(Al_2CuLi)及θ′相(Al_2Cu),但其数量减少。铝锂合金中添加微量Ce,凝固时可形成含Ce且富Cu的Al_8Cu_4Ce相粒子,在后续均匀化及固溶处理时均难以完全溶解,导致固溶基体中的Cu含量降低,时效时含Cu析出相T1相及θ′相含量减少,合金强度降低。  相似文献   

5.
通过拉伸测试和TEM观察研究了Mg、Zn、Mn微合金化对Al-Cu-Li-Zr合金力学性能和微观组织的影响。结果表明:与基础合金相比,Mg、Zn、Mn微合金化的Al-3.1Cu-2.1Li-0.1Zr合金T6时效时的强度较高,峰值强度提高约40 MPa,且在低温T8时效时的时效响应速率明显加快,同时具有较低的各向异性。Al-Cu-Li-Zr合金的析出相为大量δ'相、T1相和少量θ'相。T6时效时,微合金元素的添加显著增大δ'相、T1相和θ'相的析出密度,且出现少量S'相。低温T8时效时,微合金元素的添加有效促进δ'相和T1相细小弥散地析出。  相似文献   

6.
Ag,Mg合金化对Al-Cu-Li合金时效特性和显微组织的影响   总被引:1,自引:0,他引:1  
通过力学性能测试和显微组织观察研究微量Ag和Mg对Al-3.5 Cu-1.0Li合金时效特性和显微组织的影响.结果表明:在175℃时效时,单独加Ag不影响合金的时效硬化效果,析出物形貌与Al-Cu-Li合金相似,峰值时效状态下均析出较粗大的T1相和θ'相;单独加Mg加快Al-Cu-Li合金的时效响应,提高合金的时效硬化效果,时效时析出GP区,θ'相和T1相;Ag和Mg同时添加的2050合金中,T1相的析出速度加快,析出密度增大,并以T1相为主要强化相,时效强化效果最大.Ag,Mg添加对合金的不同影响可通过溶质原子与空位、溶质原子与溶质原子之间的相互作用来解释.  相似文献   

7.
采用熔铸法制备了Mg,Ag,Zn含量不同的4种铝锂合金。研究了上述铝锂合金在T6态时效下晶间腐蚀(IGC)行为,并总结出4种不同的晶间腐蚀典型形态。结果表明,Mg,Zn,Mg+Zn微合金化的Al-Cu-Li合金随着时效时间的延长表现的晶间腐蚀变化趋势一致。和添加Mg相比,单独添加Zn的Al-Cu-Li合金晶间腐蚀敏感性较弱。Mg+Ag微合金化Al-Cu-Li合金出现与其他3种合金不同的晶间腐蚀形态,其原因是晶界出现了大量连续的T1相,与临近晶界的无组织沉淀带(PFZ)存在电位差,导致阳极溶解的发生。  相似文献   

8.
一种2050铝锂合金薄板的微观组织与力学性能   总被引:1,自引:0,他引:1  
通过力学性能测试和微观组织观察研究了不同热处理工艺对一种2050铝锂合金薄板力学性能和组织结构的影响。结果表明:2050铝锂合金主要强化析出相为T1相和θ′相,并可能存在少量S′相析出。在T6态(175℃)、T8态(6%预变形+155℃)时效时合金具有不同的时效析出特征;相比于T6态时效,由于时效前预变形的引入,T8态时效时合金中T1相和θ′相析出密度提高,尺寸减小,其对应的强度及延伸率均提高,T8峰时效(32 h)时σ_b、σ_(0.2)和δ分别为531MPa、488 MPa和11.4%。T8态时效(155℃/32 h)时,2%~10%预变形均可促进T1相形核,2%~6%预变形可促进θ′相形核,过大的预变形(如10%)并不能促进θ′相进一步形核,但可显著抑制θ′相长大。  相似文献   

9.
为开发新型超高强铝锂合金,研究T8态时效处理的Mg、Ag、Zn复合微合金化Al-(3.2~3.8)Cu-(1.0~1.4)Li合金的显微组织及力学性能。结果表明,Li含量较低(1.0%)时,通过增加Cu含量来提高铝锂合金强度的作用有限,而同时增加Cu和Li含量则有利于其强度的明显提高。铝锂合金的主要强化相为大量细小弥散的T1(Al_2CuLi)相;同时,合金中还析出少量θ'(Al_2Cu)相及δ(Al_3Li)相,而且随时效过程的进行,其密度降低,甚至消失。Li含量较高时有利于δ'相及θ'相的形成,并可能导致形成少量S'(Al_2CuMg)相。另外,采用非固溶Cu、Li原子的总摩尔分数及其比例分析Cu、Li含量变化对合金强化效果及显微组织的影响。为获得超高强度的铝锂合金,一方面需提高Cu、Li原子的总摩尔分数,另一方面也应维持其较高比例。  相似文献   

10.
基于2196-T8511铝锂合金,对其进行重固溶-再时效处理,研究时效时间对其力学性能与组织演化的影响。结果表明:重固溶处理后的晶界清晰。再采用适当的温度和时间进行时效处理,合金可以回复到原始态的力学性能。2196铝锂合金的重新固溶-再时效析出相包括T1相(Al_2Cu Li)、δ'相(Al_3Li)和θ'相(Al_2Cu);较短时效时间可形成较多δ'相和θ'相。随着时效时间的延长,T1相逐渐增多,δ'相和θ'相减少;重新固溶-时效后,断口韧窝增加,仍以分层断裂为主。  相似文献   

11.
综述了铝锂合金研发历程及成分设计的发展阶段,重点阐述了Al-Cu-Li系铝锂合金中主合金化元素Cu、Li含量对时效析出相类型、力学性能及耐腐蚀性能的影响规律及影响机理,详细论述了微合金化元素Zr、Mn、Mg、Ag、Zn、稀土和In等对Al-Cu-Li系铝锂合金力学性能、耐腐蚀性能及微观组织包括再结晶、时效析出相类型与分...  相似文献   

12.
利用光学显微镜(OM)、差示扫描热分析法(DSC)、电子探针(EPMA)、X衍射(XRD)等研究手段分析Mg、Ag、Zn复合微合金化的Al-3.8Cu-1.28Li(质量分数,%)合金在均匀化过程中的组织转变。结果表明:合金的铸态组织中存在严重的枝晶偏析,此时合金中含有TB(Al_7Cu_4Li)、θ(Al_2Cu)、R(Al_5CuLi_3)、S(Al_2CuMg)相以及少量的(Mg+Ag+Zn)复合相与AlCuFeMn相。当第二级均匀化时间为2 h时,第二相含量大幅度降低。随着均匀化时间的延长,T_B、θ、R、S和(Mg+Ag+Zn)复合相能全部溶入基体,从而合金的枝晶偏析消除,且合金的均匀化过程可以用一指数方程描述。但是AlCuFeMn相似乎转变成Al_7Cu_2Fe和AlCuMn相,其中Al_7Cu_2Fe的尺寸几乎不发生变化。  相似文献   

13.
研究了不含Zn及0.72%Zn微合金化的Al-3.7Cu-1.15Li-0.5Mg合金T6态时效(150及175℃)不同时间后的晶间腐蚀行为,建立了其腐蚀-时效进程状态图。结果表明,Zn微合金化铝锂合金晶间腐蚀敏感性略低于不含Zn微合金化的铝锂合金。随时效进程的发展,铝锂合金腐蚀类型变化规律为:孔蚀或局部晶间腐蚀(时效早期),全面晶间腐蚀(欠时效阶段),局部晶间腐蚀(近峰时效阶段),孔蚀(过时效阶段)。晶间腐蚀深度随时效时间延长呈先增加而后降低的规律。时效时间延长,一方面晶界析出相逐渐粗化并且呈不连续分布,另一方面晶内T1相及θ相析出,晶内电位降低,晶界及晶内电位差减小,从而导致上述腐蚀类型的变化。  相似文献   

14.
以5.2 mm厚2195-T8铝锂合金为基础,进行了重固溶及后续152℃的T8(预变形3%~6%)再时效处理,研究了其微观组织与拉伸性能。结果表明,重固溶处理未显著改变2195铝锂合金的晶粒组织,仍然保持为拉长的扁平状(带状)晶粒组织态。合金的主要时效强化相为T1相(Al_2Cu Li)和θ'相(Al_2Cu)。T1相数量随预变形量增大而明显增加,而峰时效后θ'相数量及尺寸随预变形量增加呈降低的趋势。合金中T1相分数随时效时间延长而增加并主要沿长度方向长大,而峰时效后θ'相随时效时间延长逐渐减少。重固溶T8再时效处理未明显损害2195铝锂合金拉伸性能。  相似文献   

15.
采用透射电镜研究高Li含量(2.14%,质量分数)1460铝锂合金T6(145、160、175℃)及T8双级时效(4%预变形,130℃,24 h+160℃)时析出相的演化及分布。合金的时效析出相包括δ'(Al_3Li)相和T1(Al_2CuL i)相,其中δ'相为晶内优先析出相。低温(145℃)T6时效时,晶内还形成大量均匀分布而且稳定的δ'/GPI/δ'复合相。较高温度(160℃及175℃) T6时效时,还会析出大量T1相;T1相优先于(亚)晶界形核,而后随时效时间延长,逐渐在晶内析出。T8双级时效时,晶内可形成δ'/GPI/δ'复合相及T1相;其中δ'/GPI/δ'复合相开始形成于第一级低温时效,并于第二级较高温度时效时一直稳定存在;T1相则形成于第二级时效,且T8时效时的预变形促进T1相在晶内快速析出。  相似文献   

16.
对T87时效态2297铝锂合金进行中温(150℃)多向压缩直至析出相基本回溶至基体,再对其在160℃与180℃不同时间(0~48 h)条件下进行时效处理,利用透射电镜观察合金的微观组织,研究这种新型热处理工艺对2297铝锂合金组织与力学性能的影响。结果表明:时效温度为160℃时,时效48 h合金的主要析出相为δ'相,与固溶时效工艺相比,析出相析出时间延长。时效温度为180℃时,48 h合金的主要析出相为θ'相、T1相和少量δ'相。与固溶时效工艺相比,强变形固溶时效工艺增强了合金的综合力学性能。  相似文献   

17.
利用透射电镜、拉伸试验等手段,研究了时效温度、时效时间和预变形量对2195铝锂合金显微组织和力学性能的影响,优化了铝锂合金的时效处理工艺。结果表明:T6态和T8态铝锂合金的硬度均会随着时效时间的延长先增加后减小,经过预变形处理后铝锂合金的峰值硬度对应的时效时间缩短;随着时效时间的延长,T6态和T8态铝锂合金的抗拉强度、屈服强度和断后伸长率的变化趋势相同,经过预变形处理的T8态(预变形量5%+175℃/36 h)铝锂合金的峰值抗拉强度、峰值屈服强度和对应断后伸长率较T6态(175℃/48h)铝锂合金分别增加了11.58%、22.97%和17.78%。T6态和T8态铝锂合金中均存在颗粒状δ′相、针状θ′相、类球形δ′/β′复合相和针状T1相,且后者的T1相更加细小、数量更多、分布更加均匀。2195铝锂合金适宜的时效工艺和预变形量为175℃/36 h+5%。  相似文献   

18.
本文采用TEM、SEM、EBSD和室温拉伸测试等方法,研究了时效温度及预拉伸过程对喷射成形2195铝锂合金挤压棒组织性能的影响规律。结果表明:当时效温度低于145℃时,2195铝锂合金T6状态下基体微观组织中主要形成GP区+θ?/θ’相,而T8状态下基体微观组织中主要形成T1+θ’相,且T8状态下合金的晶界无析出带宽度相对T6状态显著降低。当时效温度增加至155℃时,2195铝锂合金T6状态下基体微观组织发生显著变化,逐渐由GP区+θ?/θ’相向T1+θ?/θ’相转变,并伴随θ?/θ’相数量的减少,而T8状态下基体微观组织由T1+θ?/θ’相转变为以T1相为主导的微观组织。3%的预拉伸增加了基体中的位错密度,可作为T1相优先形核位置,导致相同时效温度下,T8态合金的屈服强度明显高于T6态合金,但对抗拉强度的影响不明显,这是沉淀强化效果优于加工硬化效果导致的。T6状态下(165℃, 24 h)时效处理获得最佳的强塑性(抗拉强度584 MPa,屈服强度526 MPa,断后伸长率11.5%),而T8状态下3%预拉伸+(155℃, 24 h)时效获得最佳的强塑性匹配(抗拉强度622 MPa,屈...  相似文献   

19.
Al-Cu-Mg-(Ag,La)合金的显微组织与力学性能   总被引:1,自引:0,他引:1  
采用金相显微镜、扫描电镜、透射电镜与力学性能测试等方法,研究Ag1 La对Al-5.3Cu-0.8Mg(质量分数,%)合金的显微组织与时效特性的影响。结果表明:添加0.1La降低铸态Al-5.3Cu-0.8Mg-(0.6Ag)合金的晶粒尺寸;但并不能明显提高挤压态Al-5.3Cu-0.8Mg合金的时效硬化;添加0.6Ag能提高挤压态Al-5.3Cu-0.8Mg合金的时效硬化能力与抗拉强度,降低185℃时的峰时效时间。这是由于Ag的添加改变基体合金的时效析出相,合金的主要强化相由片状Ω相和少量θ相组成。同时,添加0.6Ag与0.1La有助于提高Al.5.3Cu-0.8Mg合金中口相的体积分数,最终使其力学性能得到进一步改善。  相似文献   

20.
以5.2 mm厚度2195-T8铝锂合金为对象,进行重固溶、4.5%预变形后不同温度(145C~160℃)的T8再时效处理,研究其力学性能与晶内显微组织演化。结果表明:重固溶处理后的晶粒形态与原始2195-T8态晶粒形态一样,仍然保持为拉长的带状晶粒组织。重固溶并经4.5%预变形后,再采用适当的温度和时间进行T8时效处理,2195铝锂合金可以回复到原始T8态的显微组织和力学性能,即2195铝锂合金采用重固溶-T8再时效处理不会明显损害其力学性能。2195铝锂合金的晶内时效析出相包括T1相(Al2Cu Li)、δ′相(Al3Li)、θ′相(Al2Cu)及θ″相(Al2Cu),其中优先析出相为T1相;较低温度及较短时间时效可形成较多δ′相和θ″相;随着时效时间延长,T1相生长,θ″相转化为θ′相并减少,δ′相消失;时效温度提高可促进该转变过程,加快铝锂合金的时效响应速度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号