首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wireless power transfer has been the field of research for many decades, and with technological advancement and increase in wireless mobile devices, the future of wireless power transfer technology is very promising. The major requirement of wireless power transfer is an efficient and compact antenna array with high gain and flawless scanning performance. In this article, a 4 × 8 element array is proposed with a gain of 18 dB and scanning capability of ±45° in azimuth and elevation plane at 5.8 GHz. The overall size of the array is 100 mm × 200 mm. The element separation in the array is only 0.48 λ. There was strong mutual coupling due to smaller separation, which has been minimized with the application of via‐fence around the antenna element. A dual feed circularly polarized annular slot‐ring antenna is proposed and analyzed with via‐fence to develop an array of 4 × 8 elements. The antenna array reflection coefficient obtained is less than 20 dB for different scan angles and the gain of the array obtained is also within 2 dB for ±45° scan angles.  相似文献   

2.
Abstract— This paper presents a new optical system used in an ultra‐thin rear projector with a 1500‐mm diagonal size and 260‐mm depth. A refractive‐reflective optical system was developed to achieve a large projection angle of 136° with a small optical distortion of 0.1%. The optics consists of a convex aspherical mirror and a refractive lens. In addition, a new Fresnel screen composed of hybrid blades of refractive‐TIR (total internal reflection) elements was developed to attain good uniformity of brightness and color within the image area.  相似文献   

3.
This paper proposes a method for combining multiple integral three‐dimensional (3D) images using direct‐view displays to obtain high‐quality results. A multi‐image combining optical system (MICOS) is used to enlarge and combine multiple integral 3D images without gaps. An optical design with a simple lens configuration that does not require a diffuser plate prevents the deterioration in resolution resulting from lens arrangement errors and the diffuser plate. An experiment was performed to compare a previously developed method with the proposed method, and the latter showed a significant improvement in image quality. A method for expanding the effective viewing angle of the proposed optical design was also developed, and its effectiveness was confirmed experimentally. A prototype device of the proposed optical design was constructed using a high‐density organic light‐emitting diode (OLED) panel with 8K resolution and 1058 ppi pixel density to achieve 311 (H) × 175 (V) elemental images, a viewing angle of 20.6° in both the horizontal and vertical directions, and a display size of 9.1 in. In addition, the proposed optical design enabled making device considerably thinner, ie, with a thickness of only 47 mm.  相似文献   

4.
Abstract— A flat‐panel display with a slanted subpixel arrangement has been developed for a multi‐view three‐dimensional (3‐D) display. A set of 3M × N subpixels (M × N subpixels for each R, G, and B color) corresponds to one of the cylindrical lenses, which constitutes a lenticular lens, to construct each 3‐D pixel of a multi‐view display that offers M × N views. Subpixels of the same color in each 3‐D pixel have different horizontal positions, and the R, G, and B subpixels are repeated in the horizontal direction. In addition, the ray‐emitting areas of the subpixels within a 3‐D pixel are continuous in the horizontal direction for each color. One of the vertical edges of each subpixel has the same horizontal position as the opposite vertical edge of another subpixel of the same color. Cross‐talk among viewing zones is theoretically zero. This structure is suitable for providing a large number of views. A liquid‐crystal panel having this slanted subpixel arrangement was fabricated to construct a mobile 3‐D display with 16 views and a 3‐D resolution of 256 × 192. A 3‐D pixel is comprised of 12 × 4 subpixels (M = 4 and N = 4). The screen size was 2.57 in.  相似文献   

5.
This paper proposes a novel summation inequality, say a polynomials‐based summation inequality, which contains well‐known summation inequalities as special cases. By specially choosing slack matrices, polynomial functions, and an arbitrary vector, it reduces to Moon's inequality, a discrete‐time counterpart of Wirtinger‐based integral inequality, auxiliary function‐based summation inequalities employing the same‐order orthogonal polynomial functions. Thus, the proposed summation inequality is more general than other summation inequalities. Additionally, this paper derives the polynomials‐based summation inequality employing first‐order and second‐order orthogonal polynomial functions, which contributes to obtaining improved stability criteria for discrete‐time systems with time‐varying delays. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
We propose a crosstalk‐free dual‐view integral imaging display. It is composed of a display panel, a barrier array, and a micro‐lens array. The central barrier is located at the vertical central axes of the display panel and the micro‐lens array to split the element image array and the viewing zone. Moreover, other barriers are located at the margins of the elemental images and corresponding micro‐lenses to eliminate the crosstalk. The lights emitting from the left and right half of the element image array are modulated by the left and right half of the micro‐lens array to reconstruct the right and left viewing zones, respectively. A prototype of the proposed dual‐view integral imaging display is developed, and good experimental results agree well with the theory.  相似文献   

7.
Abstract— A dual‐f/# optical system is evaluated and considered for illumination. Étendue theory has been employed to increase the optical throughput and collection efficiency. A classical Cooke triplet with a dual f/# is included for illustration. As a demonstration of the potential application to projection displays, an elliptically shaped illumination‐pupil system is proposed to increase the optical collection efficiency in the DMD? (Digital Micromirror Device?)‐based projection system. With a dual‐f/# configuration, this design can eliminate the f/2.4 constraint that was caused by the light‐steering action of the narrow ±12° tilt angles on the DMD?. The percentage of increase in the optical collection efficiency is 6.2% in the dual f/2.0 × f/2.4 optical projection system by using ray‐tracing simulation. This method enables a lower than f/2.4 optical design with a high brightness and an adequate contrast ratio in the DMD?‐based projectors.  相似文献   

8.
Abstract— An autostereoscopic display based on dual‐directional light guides with a fast‐switching liquid‐crystal panel was designed and fabricated to provide better 3‐D perception with image qualities comparable to that of 2‐D displays. With two identical micro‐grooved light guides, each with a light‐controlled ability in one direction, two restricted viewing cones are formed to project pairs of parallax images to the viewer's respective eyes sequentially. Crosstalk of less than 10% located within ±8°–±30° and an LC response time of 7.1 msec for a 1.8‐in. LCD panel can yield acceptable 3‐D perceptions at viewing distance of 5.6–23 cm. Moreover, 2‐D/3‐D compatibility is provided in this module.  相似文献   

9.
Abstract— A novel active‐matrix organic light‐emitting‐diode (AMOLED) display employing a new current‐mirror pixel circuit, which requires four‐poly‐Si TFTs and one‐capacitor and no additional signal lines, has been proposed and sucessfully fabricated. The experimental results show that a new current mirror can considerably compensate luminance non‐uniformity and scale down a data current more than a conventional current‐mirror circuit in order to reduce the pixel charging time and increase the minimum data current. Compared with a conventional two‐TFT pixel, the luminance non‐uniformity induced by the grain boundaries of poly‐Si TFTs can be decreased considerably from 41% to 9.1%.  相似文献   

10.
Abstract— A full‐color eyewear display with over 85% see‐through transmittance with a 16° horizontal field of view was developed. Very low color crosstalk, less than 0.008 Δuv′ uniformity, and 120% NTSC color gamut were achieved. Waveguides with two in‐ and out‐coupling reflection volume hologram elements enabled a simple configuration that has an optical engine beside the user's temples. The reflection volume hologram elements used on the waveguides realized a small thickness of 1.4 mm for each waveguide, and an out‐coupling reflection volume hologram used as an optical combiner contributed a high see‐through transmittance of 85% due to its wavelength selectivity. However, there are technical challenges in achieving a reasonable screen size and quality color images with optics that utilize holographic waveguides because holograms have large chromatic dispersions compared to conventional optical elements such as lenses and mirrors. Approaches to overcome these issues are described.  相似文献   

11.
Abstract— A viewing‐angle‐controllable liquid‐crystal display (LCD) is proposed. When the device is only driven by an in‐plane electric field, it exhibits a wide‐viewing‐angle (WVA) mode. And it exhibits narrow‐viewing‐angle (NVA) mode when it is driven by a vertical electric field as well as an in‐plane electric field. In this manner, the viewing angle of the device can be controlled from 100° to 30°. The device exhibits a good viewing‐angle‐controlling characteristic and high transmittance.  相似文献   

12.
Abstract— Two pico‐projection systems, a monochrome green and a full‐color system, based on high‐efficiency OLED microdisplays (VGA; pixel size, 12 μm) are presented. Both optical systems are described by a numerical aperture of about 0.3, a magnification of 15x, and a working distance of 300–360 mm. The frequency limit of both systems is 42 cycles/mm at an image contrast of about 60%. The monochrome projection system with a volume smaller than 10 cm3 consists of one green OLED and a projection lens with five elements. The measured luminance in the image plane is about 0.061 lm. The image has a diagonal of 150 mm with a working distance of about 300 mm and has a considerable image contrast of 396:1. The second system combines three high‐brightness OLEDs, red, green, and blue colored, together with a projection lens and an image‐combining element, and an X‐Cube to achieve full‐color projection. The estimated luminance value for the three‐panel projection unit with an OLED luminance of 10,000 cd/m2 for each display will be about Φcalculated = 0.147 lm. In this paper, the system concepts, the optical designs, and the realized prototypes of the monochrome and full‐color projection system are presented.  相似文献   

13.
A novel compact dual‐band balanced coupler with differential‐mode power division, broadband common‐mode, and common‐to‐differential‐mode conversion suppression is proposed. In these double‐functionality balanced‐coupler architectures, double‐sided parallel‐strip line 180° phase inverters are used to realize the broadband common‐mode rejection. Moreover, the frequency is tunable by changing the characteristic impedance of the transmission line. For practical verification, a balanced couplers (εr = 2.65, h = 0.5 mm, tan(δD) = 0.003) operation at 0.9/1.8 GHz is constructed in microstrip technology and tested.  相似文献   

14.
In this study, the authors report on high‐quality amorphous indium–gallium–zinc oxide thin‐film transistors (TFTs) based on a single‐source dual‐layer concept processed at temperatures down to 150°C. The dual‐layer concept allows the precise control of local charge carrier densities by varying the O2/Ar gas ratio during sputtering for the bottom and top layers. Therefore, extensive annealing steps after the deposition can be avoided. In addition, the dual‐layer concept is more robust against variation of the oxygen flow in the deposition chamber. The charge carrier density in the TFT channel is namely adjusted by varying the thickness of the two layers whereby the oxygen concentration during deposition is switched only between no oxygen for the bottom layer and very high concentration for the top layer. The dual‐layer TFTs are more stable under bias conditions in comparison with single‐layer TFTs processed at low temperatures. Finally, the applicability of this dual‐layer concept in logic circuitry such as 19‐stage ring oscillators and a TFT backplane on polyethylene naphthalate foil containing a quarter video graphics array active‐matrix organic light‐emitting diode display demonstrator is proven.  相似文献   

15.
In this article, a novel wideband metal‐only transmitarray based on 1‐bit polarization rotation element is proposed. First, a novel wideband polarization rotation element is designed, which consists of four metallic layers without any substrate layers. The element can be used to rotate polarization of the transmission wave by 90° with respect to that of the incident wave. The element and its mirror image can provide 0° and 180° phase shifts with 1‐bit phase quantization in the 9.2 to 11.2 GHz band with more than 80% polarization conversion rate. Then, by using the proposed element, a 21 × 21‐element transmitarray with a standard pyramidal horn feed is designed and fabricated. The measured results show that the transmitarray achieves 16.8% 1‐dB gain bandwidth with a peak gain of 21.6 dBi. Its cross‐polarization and side‐lobe levels are below ?20 and ?10 dB, respectively, in the operating band. The measured results agree well with the simulation ones, validating effectiveness of the transmitarray design method.  相似文献   

16.
We present an optimized pruning algorithm that allows for considerable geometry reduction in large botanical scenes while maintaining high and coherent rendering quality. We improve upon previous techniques by applying model‐specific geometry reduction functions and optimized scaling functions. For this we introduce the use of Precision and Recall (PR) as a measure of quality to rendering and show how PR‐scores can be used to predict better scaling values. We conducted a user‐study letting subjects adjust the scaling value, which shows that the predicted scaling matches the preferred ones. Finally, we extend the originally purely stochastic geometry prioritization for pruning to account for view‐optimized geometry selection, which allows to take global scene information, such as occlusion, into consideration. We demonstrate our method for the rendering of scenes with thousands of complex tree models in real‐time.  相似文献   

17.
This paper proposes a compact dual‐band printed quadrifilar helix antenna (QHA) operating at GPS‐L1 (1575 ± 2 MHz) and L2 (1228 ± 2 MHz) bands. To generate the dual operating bands, two interconnected lines with unequal lengths are introduced as a radiating element. The closely allocated radiators resonate in quarter‐wavelength mode, which significantly miniaturizes antenna's size. Four shunt capacitors are loaded near ports to manipulate the mutual coupling between each two radiators, so that satisfactory matching condition with minimum active reflection at two target bands can be obtained simultaneously. Then, a compact feeding network consisting of on‐chip hybrid couplers is designed and connected to the QHA. Measured results show that the compact proposed antenna achieves peak gains of 1.5 dBic and 2.6 dBic at 1575 MHz and 1228 MHz, respectively. The axial ratios (ARs) at L1 and L2 bands are both below 2.5 dB, and the half‐power‐beamwidths (HPBWs) are as wide as 130° and 116°, respectively. As compared with reported works, the proposed antenna can achieve much more compact size (0.11 × 0.21 λ02) and dual‐band radiation at the same time.  相似文献   

18.
Abstract— The field of view is an important parameter of a near‐to‐eye display. To achieve an immersive viewing experience, the field of view should be as high as possible. Presently, in most of the commercially available devices the field of view is between 15° and 30°. In this paper, a large‐field‐of‐view exit pupil expander that is based on diffractive optics was demonstrated. Usually these types of diffractive expanders cannot have a field of view much more than 25°. Here, an exit pupil expander with an extended field of view, based on two stacked plates, was demonstrated. The expander is designed for green light and it achieves a field of view of more than 40°.  相似文献   

19.
Abstract— Although there are numerous types of floating‐image display systems which can project three‐dimensional (3‐D) images into real space through a convex lens or a concave mirror, most of them provide only one image plane in space to the observer; therefore, they lack an in‐depth feeling. In order to enhance a real 3‐D feeling of floating images, a multi‐plane floating display is required. In this paper, a novel two‐plane electro‐floating display system using 3‐D integral images is proposed. One plane for the object image is provided by an electro‐floating display system, and the other plane for the background image is provided with the 3‐D integral imaging system. Consequently, the proposed two‐plane electro‐floating display system, having a 3‐D background, can provide floated images in front of background integral images resulting in a different perspective to the observer. To show the usefulness of the proposed system, experiments were carried out and their results are presented. In addition, the prototype was practically implemented and successfully tested.  相似文献   

20.
This paper proposes a design method to reduce the flicker of liquid crystal display panels based on indium‐gallium‐zinc‐oxide (IGZO) thin‐film transistors (TFTs). The proposed design method employs a human factor model to convert the flicker measured at low frame frequency (F FRAME) to a modification value of the measured flicker (MVMF ) having a frequency sensitivity of flicker, which can distinguish between no blinking and weak blinking. To investigate the causes and characteristics of flicker, the frequency component and increase factor of flicker are analyzed using the checkerboard and solid images. The increase factor in flicker is examined using IGZO TFTs with different antenna ratios (AR s) that cause the variation in threshold voltage of IGZO TFT. To verify the proposed design method, two test panels are implemented with asymmetric and symmetric AR s. The MVMF s of the 15 Hz component at a low F FRAME of 30 Hz show that the solid image with a symmetric AR has an MVMF of ?62.9 dB, which is improved by 24.3 dB compared to that with an asymmetric AR . Therefore, the proposed method is applicable for a flicker‐free liquid crystal display panels at a low F FRAME.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号