共查询到18条相似文献,搜索用时 78 毫秒
1.
2.
灰色神经网络模型在物流需求预测中的研究 总被引:1,自引:1,他引:1
研究物流准确预测,进行物流优化管理问题,由于现代物流需求变化是多种因素综合的结果,传统单一模型只能反映部分变化规律,不能全面反映其需求变化规律,导致预测精度不高.为了提高了物流需求的预测精度,提出一种灰色神经网络的物流需求预测方法.组合方法首先采用灰色预测模型对训练样本进行学习,得到BP神经网络的输入值,然后采用BP神经网络对其进行预测,得到最终物流需求值.将组合模型应用于湖南省物流需求预测中,实验结果表明,改进的模型提高了物流需求预测精度,发挥了2种单一模型优势,克服了单一模型不足,提供一种物流优化管理的有效方法. 相似文献
3.
状态空间时间序列的区域物流需求预测研究 总被引:1,自引:0,他引:1
区域物流需求是制定区域物流发展政策、基础设施建设和物流系统规划的重要依据,由区域各项相关经济指标共同决定。针对区域物流需求预测中样本数量小的问题,提出了互信息高维度特征降维方法,在保证相关综合信息完整性基础上降低原始数据维度,在此基础上建立了状态空间时间序列预测模型,同时采用局部线性小波神经网络和LIBSVM支持向量回归模型进行对比实验。算例分析及实验结果表明,采用互信息降维后的预测模型相对误差平均减少54.8%,互信息与状态空间时间序列模型相结合的预测方法对于区域物流需求预测问题预测精度较高,相对误差约为0.08。 相似文献
4.
研究物流需求预测准确度问题。物流需求预测中存在数据小以及非线性特点,使预测系统存在不确定性。为解决上述问题,提出了一种泊松分布的神经网络需求预测算法,采用泊松分布算法对物流的整体需求进行分类,然后采用灰色理论算法选择物流需求影响因子,对物流的需求进行实时预测,仿真结果表明,改进物流需求预测方法比传统的灰色理论预测模型以及BP神经网络具有更高的预测精确度,有效地提高了区域物流需求的预测准确度,具有一定的实际应用价值。 相似文献
5.
王晓明 《电子制作.电脑维护与应用》2013,(15):269
随着全球经济一体化进程的加快,区域物流与区域经济的发展越来越成为各地政府部门竞相发展的热点。区域物流对于各地优化产业结构,改善投资环境,提高区域物流中心建设越来越受到重视。 相似文献
6.
随着电力工业逐步进入市场化,区域配电网短期电力负荷预测在电力行业中地位越来越重要,精准的短期负荷预测方法对电力系统安全稳定的运行至关重要.因此,文章在综合分析实际负荷特征和BP神经网络原理的基础上,提出BP神经网络预测方法,并通过以东北某地和荷兰某地两个场景下的实际负荷对所提出的方法进行验证.最后采用平均百分比误差、均... 相似文献
7.
8.
RBF神经网络在物流系统中的应用 总被引:3,自引:7,他引:3
物流已经成为我们国民经济的动脉,但是影响其成本的因素过多且复杂,对其成本的研究目前较多的是采用简单的猜测式赋值,这样的方法具有较大的主观性,因此物流成本预测这个复杂的非线性问题已经成了物流界研究的重点问题。将社会物流系统看出了一个投入产出系统,将其物流成本——运输费用、保管费用和管理费用当作了投入,而社会的消费总额看成了产出,因此导出物流消费品总额和成本之间的映射关系模型;其次,提出用改进的自适应遗传算法对径向基函数神经网络进行了优化,得到了最佳的基函数中心和宽度值;最好用优化后的径向基函数神经网络应用于物流成本的预测,结果表明,模型具有好的稳定性和较高的精度,对扩大消费、拉动内需具有一定的参考意义。 相似文献
9.
基于BP神经网络的物流交通实载率监测仿真 总被引:1,自引:0,他引:1
针对传统物流交通实载率监测方法仅处理静态信号,导致监测误差率较高,引用BP神经网络对物流交通实载率监测方法进行优化设计。在物流运输车辆和运输路线上,安装物流交通数据监测设备,为实载率的计算提供原始数据。借助监测设备对道路上运行的车辆进行识别,若识别为物流监测车辆,则利用BP神经网络对产生的监测信号进行动态处理。最终通过确定载重量、运输距离和车辆行驶里程的值,得出实载率的实时监测结果。通过仿真验证得出结论:设计的基于BP神经网络的物流交通实载率监测方法的平均误差率为1.4%,与传统方法相比降低了2.4%,且可准确监测实载率,保障了监测准确率。 相似文献
10.
本文首先对饱和模式线性神经网络模型(LSSM)进行分析,指出其实际上是一种沿内部和边界面依次搜索局部极小值点进行存储的联想记忆模型,进而证明了基于约束区域的神经网络[6]与LSSM具有相同的联想记忆特性,它由普通的常微分方程描述,更利于模拟和硬件实现,计算机模拟说明了结论的正确性. 相似文献
11.
研究区域物流需求预测优化问题,区域物流需求与经济结构和资源分布相关,因此存在较强的非线性,属于一种小样本、非线性数据结构。传统线性、大样本预测方法无法进行准确预测,预测精度比较低。为提高了区域物流需求预测精度,提出一种支持向量机物流需求预测方法。首先采用多元回归分析法选择区域物流需求的影响因子,然后将输入样本输入到支持向量机学习,并通过蚁群法对支持向量机参数进行优化,最后建立区域物流需求与影响因子之间复杂的非线性关系模型。采用上海市1978-2003年物流需求量对模型性能进行测试,结果表明,相对于多元线性回归、BP神经网络模型,支持向量机提高了区域物流需求的预测精度,在区域需要预测中具有广泛的应用前景。 相似文献
12.
科学、合理、有效地对棉纺设备运行状态进行一个综合性的预测评估,对于提高企业的技术水平和经济效益、提高设备的利用率和可靠性、保证人身的安全性都是很有帮助的。该文通过建立基于动量因子的BP神经网络模型,确定合理的神经网络结构,并通过调整学习速率、动量因子等参数,确定最终的阈值和权值,进而对棉纺设备的运行状态进行评估预测。经过实例分析,此BP神经网络模型可以有效地解决该预测问题,验证了该预测模型的合理性。 相似文献
13.
神经网络模型在预测土壤pH值中的应用研究 总被引:2,自引:0,他引:2
该文通过对西藏察雅县105层土样资料(1988年)建立CaCO3-pH神经网络模型,与刘世全等所做的回归模型在拟合精度和预测性能方面作了比较,结果显示,BP网络在拟合性能方面不亚于回归方法,在预测性能上要优于回归方法。该文对将神经网络引入土壤环境系统的研究中作了有意义的尝试;所建立CaCO3-pH间的关系模型,是研究污染物在土壤中的降解和转化的重要基础,对评价周边环境因素对土壤的综合作用也有重要意义。本文的结论说明,神经网络对于研究土壤系统的目标因子和相应的影响因子间的关系方面,是较为适用的数学手段。 相似文献
14.
15.
随着滴滴、Uber等出租车服务的日益普及,用户的乘车需求预测逐渐成为智慧城市、智慧交通的重要组成部分.准确的预测模型既可以满足用户的出行需求,也可以降低道路车辆空载率,有效地避免资源浪费,并缓解交通压力.车辆服务商可以收集到大量GPS数据及用户需求数据,然而,如何合理运用数据进行需求预测,是关键且实用的问题.提出一种结合城市POI的可变形卷积时空网络(DCSN)模型来预测区域乘车需求,模型包括两部分——可变形卷积时空模型与POI需求关联模型:前者即通过DCN与LSTM建模未来需求与时空之间的相关性,后者则通过区域POI差异化指数与需求差异化指数捕捉区域间的相似关系.最后使用全连接网络将两个模型整合起来,进而得出预测结果.使用滴滴出行的大型真实乘车需求数据进行实验,最终实验结果表明,所提出的方法在预测精度上优于现有的预测方法. 相似文献
16.
基于BP神经网络改进的黄金价格预测 总被引:3,自引:1,他引:3
在黄金期货价格预测问题的研究中,价格具有严重的非线性、高噪声和影响因子难以确定等因素,决定了预测的难度.传统方法对黄金价格的预测都强调依赖于黄金价格间的线性关系,局限性明显,导致了预测精度不高.为提高黄金价格预测精度,提出一种投影寻踪优化的BP神经网络改进模型.先通过定性分析得到影响黄金价格波动的因子,然后采用投影寻踪方法选择很强影响力的因子作为神经网络的输入节点,并采用改进的算法进行学习,寻找最优的BP网络结构,利用改进模型,黄金期货价格实现了高精度仿真.结果证明,模型为黄金价格预测提供了一种有效的高精度预测工具. 相似文献
17.
18.
基于BP神经网络的港口货物吞吐量预测 总被引:1,自引:1,他引:1
港口货物吞吐量的预测对于港口的建设和规划有着极其重要的意义.本文将BP神经网络理论引入港口货物吞吐量的预测中,建立以港口货物吞吐量影响因素作为输入神经元,港口货物吞吐量作为输出神经元的三层BP神经网络模型,并对南京港货物吞吐量进行预测,得到较好的预测结果. 相似文献