首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aluminium 2124 alloy and its composite with 10% SiC particles of average particle size of 23 μm were squeeze cast at different pressures. The effect of squeeze pressure during solidification was evaluated with respect to microstructural characteristics using optical microscopy and image analysis and mechanical properties by tensile testing. The microstructural refinement, elimination of casting defects such as shrinkage and gas porosities and improved distribution of SiC particles in the case of the composite were resulted when pressure is applied during solidification. A pressure level of 100 MPa was found to be sufficient to get the microstructural refinement and very low porosity level in both the alloy and the composite. The improved mechanical properties observed in the squeeze cast alloy and the composite could be attributed to the refinement of microstructure within the material.  相似文献   

2.
The Al–5.0 wt% Cu–0.6 wt% Mn alloys with different Fe contents were prepared by gravity die casting and squeeze casting. The difference in microstructures and mechanical properties of the T5 heat-treated alloys was examined by tensile test, optical microscopy, deep etching technique, scanning electron microscope and electron probe micro-analyzer. The results show that both β-Fe and α (CuFe) are observed in T5 heat-treated gravity die cast alloy and only α (CuFe) appears in the squeeze cast alloy when the Fe content is 0.5 wt%. When the Fe content is more than 1.0 wt%, the main Fe-rich intermetallics is α (CuFe) in both squeeze cast and gravity die cast alloys. The mechanical properties of both the gravity die cast and squeeze cast alloys decrease gradually with the increase of Fe content due to the decreased volume fraction of precipitation particles, the increased volume fraction of Fe-rich intermetallics and the increased size of α (Al) dendrites. The squeeze cast alloys with different Fe contents have superior mechanical properties compared to the gravity die cast alloys, which is mainly attributed to the reduction of porosity and refinement of Fe-rich intermetallics and α (Al) dendrite. In particularly, the elongation of the squeeze cast alloys is less sensitive to the Fe content than that of the gravity die cast alloys. An elongation level of 13.7% is obtained in squeeze cast alloy even when the Fe content is as high as 1.5%, while that of the gravity die cast alloy is only 5.3%.  相似文献   

3.
In this work, an efficient process by diluting the nano-SiCp/Al composite granules in the molten matrix under ultrasonic vibration(UV) was developed to prepare metal matrix nano-composites(MMNCs).Millimeter-sized composite granules with high content of SiC particle(8 wt%) were specially fabricated by dry high-energy ball milling(HBM) without process control agent, and then remelted and diluted in molten Al alloy under UV. The MMNCs melt was finally squeeze cast under a squeeze pressure of 200 MPa, Microstructure of the composite granules during dry HBM was investigated, and the effect of UV on microstructure and mechanical properties of the MMNCs was discussed. The results indicate that nano-SiC particles are uniformly distributed in the nano-SiCp/Al composite granules, which are covered by vestures of pure Al. During diluting, nano-SiC particles released from the composite granules are quickly dispersed in the molten matrix by UV within 4 min. Microstructure of MMNCs is significantly refined under UV and squeeze casting, eutectic Si phase modified to fine islands with an average length of 1.4 μm. Tensile strength of the squeeze cast MMNCs with 1 wt% of nano-SiC particles is 269 MPa, which is improved by 25% compared with the A356 alloy matrix.  相似文献   

4.
Abstract

An in situ 5 vol.-% TiB2/2014 composite was prepared by an exothermic reaction of K2TiF6, KBF4 and Al melts. The effect of introduction of in situ formed TiB2 particles on the squeeze-casting formability of the composite was discussed. The microstructural evolution and changes in the mechanical properties of the composite at different squeeze pressures were investigated. The results showed that a pouring temperature of 710°C, a die temperature of 200°C and a squeeze pressure of 90 MPa were found to be sufficient to get the qualified squeeze cast and maximum mechanical properties for an Al 2014 alloy. However, the pouring temperature, die temperature and squeeze pressure need to be increased to 780°C, 250°C and 120 MPa for the composite to get the qualified squeeze cast and maximum mechanical properties as a result of the effect of introduction of in situ formed TiB2 particles on the solidification process, plasticity and fluidity of the composite. The microstructural refinement, elimination of casting defects such as shrinkage porosities and gas porosities and improved distribution of TiB2 particles in the case of the composite result when pressure was applied during solidification. Compared with the gravity-cast composite, the tensile strength, yield strength and elongation of the squeeze-cast composite at 120 MPa increased by 21%, 16% and 200%.  相似文献   

5.
目的 研究挤压铸造与超声处理工艺对铸造铝锂合金组织与性能的影响规律,分析工艺改变对组织细化及性能提升的作用机理,解决传统重力铸造下铝锂合金性能较差的问题。方法 将挤压铸造(SC)与超声处理(UT)相结合制备Al-2Li-2Cu-0.5Mg-0.2Zr合金,在熔体超声2 min后,以50 MPa的挤压力制备合金,探究各工艺对铸造铝锂合金显微组织与力学性能的影响。结果 与传统的重力铸造(GC)相比,SC合金的孔隙率和成分偏析显著降低,晶粒尺寸也明显减小,特别是经过UT+SC处理的合金得到了进一步优化。经UT+SC处理后,Al-2Li-2Cu合金的极限抗拉强度(UTS)、屈服强度(YS)和伸长率分别为235 MPa、135 MPa和15%,与GC合金相比,分别提高了113.6%、28.6%、1 150%,与SC合金相比,分别提高了5.4%、3.8%、15.4%。结论 UT+SC工艺能明显提升铸造铝锂合金的性能。UT+SC制备的Al-Li合金的强度和伸长率的提高归因于孔隙率的降低、晶粒细化和第二相的均匀分布。将挤压铸造与超声处理相结合制备铸造铝锂合金解决了重力铸造下合金性能较差的问题,为满足航...  相似文献   

6.
In this paper, a new magnesium alloy Mg–12Zn–4Al–0.5Ca (ZAX12405) was prepared by squeeze casting. The effects of processing parameters including applied pressure, pouring temperature and dwell time on the microstructure and mechanical properties of squeeze-cast ZAX12405 alloy were investigated. It was found that squeeze-cast ZAX12405 alloy exhibited finer microstructure and much better mechanical properties than gravity casting alloy. Increasing the applied pressure led to significant cast densification and a certain extent of grain refinement in the microstructure, along with obvious promotion in mechanical properties. Lowering the pouring temperature refined the microstructure of ZAX12405 alloy, but deteriorated the cast densification, resulting in that the mechanical properties firstly increased and then decreased. Increasing the dwell time promoted cast densification and mechanical properties just before the solidification process ended. A combination of highest applied pressure (120 MPa), medium pouring temperature (650 °C) and dwell time (30 s) brought the highest mechanical properties, under which the ultimate tensile strength (UTS), yield strength (YS) and elongation to failure (Ef) of the alloy reached 211 MPa, 113 MPa and 5.2% at room temperature. Comparing with the gravity casting ZAX12405 alloy, the UTS and Ef increased 40% and 300%, respectively. For squeeze-cast Mg–12Zn–4Al–0.5Ca alloy, cast densification was considered more important than microstructure refinement for the promotion of mechanical properties.  相似文献   

7.
Tensile strength,ductility and fracture of magnesium-silicon alloys   总被引:12,自引:0,他引:12  
Tensile tests were performed between 293–573 K in order to investigate the mechanical properties of cast and extruded Mg-Si alloys. For the cast materials, Mg-high Si ( 10 wt%) alloys showed lower values of the highest tensile strength at temperatures up to 373 K, as compared to pure Mg and Mg-low Si (<10 wt%) alloys, whereas the strength at 573 K increased with increasing Si content. The addition of aluminum and zinc to the alloys was effective in increasing the strength. The fact that the Mg-high Si alloys showed lower strength than the Mg-low Si alloys was because a high volume of Mg2Si embrittled the Mg-Si alloys. Microstructural investigations revealed that the particles of Mg2Si were coarse for the cast materials and fracture of the particles was caused by deformation. The mechanical properties of the cast materials were improved by hot extrusion. Microstructural refinement by hot extrusion was responsible for the improvement of the mechanical properties.  相似文献   

8.
Some important problems associated with cast metal matrix composites (MMCs) include non-uniformity of the reinforcement particles, high porosity content, and weak bonding between reinforcement and matrix, which collectively result in low mechanical properties. Accumulative roll bonding (ARB) process was used in this study as a very effective method for refinement of microstructure and improvement of mechanical properties of the cast Al/10 vol.% Al2O3 composite. The average particle size of the Al2O3 was 3 μm. The results revealed that the microstructure of the composite after eleven cycles of the ARB had an excellent distribution of alumina particles in the aluminum matrix without any noticeable porosity. The results also indicated that the tensile strength and elongation of the composites increased as the number of ARB cycles increased. After eleven ARB cycles tensile strength and elongation values reached 158.1 MPa and 7.8%, which were 2.54 and 2.36 times greater than those of the as-cast MMC, respectively.  相似文献   

9.
A356 aluminum alloy reinforced with 7 wt.% microsilica composites was produced by the three different processing routes viz. liquid metal stir casting followed by gravity casting, compocasting followed by squeeze casting and modified compocasting route and their properties were examined. Microstructure of liquid metal stir cast Al MMC shows agglomeration of particles leading to high porosity level in the developed material. Adopting new route of compocasting followed by squeeze casting process prevents the agglomeration sites with uniform distribution and dispersion of the dispersoids in the matrix metal. Modified compocasting process reduces the segregation of particles in the final composites thus enhancing the mechanical, tribological and corrosion properties of the composites. Superior wear-resistance properties were exhibited by the modified compocast composite compared to the unreinforced squeeze cast alloy and abrasive type wear mechanism was observed in the case of composite. Increasing the sliding speed resulted in the quick evolution of tribolayer and the wear rate of composite gets reduced. The presence of intermetallic phases like MgAl2O4, NaAlSi3O8 and KAlSi3O8 has a favorable effect on increased corrosion resistance of the composite. Microsilica particles significantly enhanced the compressive strength of modified compocast composites compared to the unreinforced squeeze cast Al alloy.  相似文献   

10.
Abstract

Countergravity low pressure casting (CLA) was performed to enhance the properties of ASTM F745 stainless steel (SS), which is usually used as biomaterial. The macro- and microstructures were compared with those obtained by the conventional process of investment casting (IC). The SS cast by CLA (SSCLA) exhibited a smaller size of solidification cell and finer dendritic microstructure. The average of its dendritic primary spacing was 110·4 μm, while for the same steel cast by IC (SSIC), it was 186·7 μm. The density of non-metallic inclusions δI in the SSCLA was 717 I mm?2, being the majority of them smaller than 1·5 μm. In the case of SSIC, δI was 852 I mm?2, with a size distribution of up to 8 μm. The SSCLA showed a higher breakdown potential than the SSIC, the values being 0·300 and 0·210 V(saturated calomel electrode) respectively, which means a higher resistance to suffer localised corrosion. Finely, the CLA process also allowed obtaining better mechanical properties.  相似文献   

11.
Swage casting is a new casting technique which combines the advantages of squeeze, centrifugal and semi-solid casting methods. In this new casting method, components with one rotating axis can be produced on a swage casting machine from molten metal in a one-step operation. A shape like a “bomb-body” is chosen to demonstrate the advantages of this new method by using A380 Al–Si–Cu alloy. The same alloy is also cast with centrifugal and squeeze casting methods. In this study, the swage casting method and its features are briefly described. The final microstructures, mechanical properties and amount of porosity of the cast pieces produced by squeeze, centrifugal and swage casting methods are compared. Swage cast pieces showed a different composition of microstructure that consists of fine dendritic particles at the chill ends and a mixture of spherical and rosette shaped particles at the core. The swage cast pieces also have a slightly higher mechanical strength as indicated by tensile strength and Brinell hardness values.  相似文献   

12.
《Materials Letters》2005,59(8-9):894-900
A research program was conducted to study the effects of squeeze pressure (70, 100 and 160 MPa) and heat treatment T6 on the structure, hardness and tensile properties of cast Al6Si0.3Mg alloys. The influence of squeeze pressure on macro- and microstructures of Al6Si0.3Mg alloys has been investigated. Some of castings were solution treated at 540 °C for various times and others were subjected to aging at 170 °C after solution treatment. The results indicated that precipitation occurred within about 30 min for both cast and squeeze cast alloys. The hardness began to increase and maximum values were observed after about 10 h for as-cast alloy. Increasing of squeeze pressure (70–160 MPa) accelerated strength of the alloys from 8 to 4 h, respectively. Squeeze pressures decreased the percentage of porosity and increased the density, also it decreased the grain size of α-Al and modified the Si eutectic. Hardness and tensile properties increased with both heat treatment and increasing of squeeze pressure.  相似文献   

13.
Aluminum–silicon carbide composite (Al–SiCp) is one of the most promising metal matrix composites for their enhanced mechanical properties and wear resistance. In the present study, Al–SiC (average size 55 μm) composites with 5% and 10% by volume were fabricated by stir casting technique. The equal-channel angular pressing (ECAP) was then applied on the cast composites at room temperature in order to study the effect of ECAP passes on the SiCp size and distribution. The ECAP process was successfully carried out up to 12(8) passes for Al–5%(10%)SiC samples. Microstructure study revealed that the highest refinement by breakage of SiCp was achieved after the first ECAP pass and that further refinement took place in the next passes. More breakage of the SiCp was found in the composite richer in reinforcing particles so that the SiCp reached approximately 1 μm in the Al–10%SiC after 8 passes and 4 μm in Al–5%SiC after 12 ECAP passes. The distribution of SiC reinforcement particles also improved after applying ECAP. The factors including decrease in reinforcing particle size, improvement in their distribution, decrease in porosity in addition to strain hardening and grain refining of the matrix resulted in enhancement of tensile and compressive strengths as well as hardness by more than threefold for the Al–5%SiC after 12 passes and for Al–10%SiC after 8 passes compared to the cast composites. Additionally, the composite remained ductile after the ECAP process. The fracture surface indicated good bond between the matrix and the reinforcement.  相似文献   

14.
A comparative study of room temperature severe plastic deformation (SPD) of a hypoeutectic Al-7 wt.% Si casting alloy by high pressure torsion (HPT) and equal channel angular pressing (ECAP) has been performed. Microstructural parameters and microhardness were evaluated in the present work. Three different initial Si solid solution contents have been considered: as cast (C sample, 1.6 wt.% Si), annealed and quenched (Q sample, 1.2 wt.% Si) and annealed and furnace cooled (S sample, 0.7 wt.% Si). The samples processed by ECAP have smaller average Si particle sizes (0.9-1.7 μm), than those for samples processed by HPT (2.4-4.4 μm). The initial supersaturated Si solid solution is the major factor affecting the microstructure and the mechanical properties of the material. Fine deformation-induced Si precipitates from the supersaturated solid solution were responsible of the large grain refinement obtained by both SPD processing methods, which was considerably higher than that reported for pure aluminium. Q samples, processed by both SPD methods, containing an intermediate concentration of Si in solid solution, show the highest hardness due to the finest and most homogeneous microstructure. The finest and homogeneous grain size was ∼0.2 μm for the HPTed and ∼0.4 μm for the ECAPed Q samples.  相似文献   

15.
用Al-10Sr变质剂和Al-5Ti-B细化剂处理A356铝合金熔体,并结合挤压铸造和T6热处理工艺,研究变质细化与热处理对A356铝合金挤压铸造件的组织和性能的影响规律。结果表明,随着Al-10Sr变质剂加入量的增加,共晶Si的形貌由片状和长杆状变为颗粒状和蠕虫状,α-Al的晶粒尺寸先减少后增大。当Al-10Sr的加入量(质量分数)为0.3%时,挤压铸造成形件的最优抗拉强度、屈服强度和延伸率分别为221.3 MPa、104.5 MPa和10.3%。Al-10Sr变质能提高形核率、细化α-Al晶粒尺寸和改变共晶硅形貌,使铸造件的力学性能提高。随着A-5Ti-B的增加,晶粒尺寸先降后增,力学性能先增后降。Al-5Ti-B的加入量为0.6%时,最优抗拉强度、屈服强度和延伸率分别为215.6 MPa、106.6 MPa和9.0%。T6热处理(固溶540℃/4 h+时效190℃/4 h)使屈服强度和抗拉强度显著提高和延伸率降低。经过0.6% 的Al-5Ti-B细化处理,T6处理挤压铸造件的最优的抗拉强度、屈服强度和延伸率分别为297.5 MPa、239.3 MPa和8.0%。共晶硅的球化和细化、成形件成分的均匀化以及Mg2Si强化相在基体中弥散析出,是热处理后构件力学性能提高的主要原因。  相似文献   

16.
This study is concerned with the effects of HIPping on high-cycle fatigue properties of investment cast A356 Al alloys. Tensile and high-cycle fatigue tests were conducted on cast alloys, two of which were HIPped, and then the test data were analyzed in relation with microstructures, tensile and fracture properties, and fatigue fracture mode. Eutectic Si particles were homogeneously dispersed in the matrix of the casting A356 Al alloys, but there were many large pores formed as casting defects. The high-cycle fatigue test results indicated that fatigue strength of the HIPped alloys was higher than that of the non-HIPped alloys because of the significant reduction in volume fraction of pores by HIPping. In the non-HIPped specimens, fatigue cracks initiated at large pores adjacent to the specimen surface and then propagated down to several hundreds micrometers depth while coalescing with other large pores. On the other hand, the HIPped specimens, where pores did not affect the fatigue much, fatigue cracks initiated at eutectic Si particles and propagated along them, thereby leading to improved fatigue strength by 40 to 50% over the non-HIPped specimens.  相似文献   

17.
One of the great challenges of producing cast metal matrix composites is the agglomeration tendency of the reinforcements. This would normally result in poor distribution of the particles, high porosity content, and low mechanical properties. In the present work, a new method for uniform distribution of very fine SiC particles with average size of less than 3 μm was employed. The key idea was to allow for gradual in situ release of properly wetted SiC particles in the liquid metal. For this purpose, SiC particles were injected into the melt in three different forms, i.e., untreated SiCp, milled particulate Al–SiCp composite powder, and milled particulate Al–SiCp–Mg composite powder. The resultant composite slurries were then cast from either fully liquid (stir casting) or semisolid (compocasting) state. Consequently, the effects of the casting method and the type of the injected powder on the microstructural characteristics as well as the mechanical properties of the cast composites were investigated. The results showed that the distribution of SiC particles in the matrix and the porosity content of the composites were greatly improved by injecting milled composite powders instead of untreated-SiC particles into the melt. Casting from semisolid state instead of fully liquid state had similar effects. The average size of SiC particles incorporated into the matrix was also significantly reduced from about 8 to 3 μm by injecting milled composite powders. The ultimate tensile strength, yield strength and elongation of Al356/5 vol.%SiCp composite manufactured by compocasting of the (Al–SiCp–Mg)cp injected melt were increased by 90%, 103% and 135%, respectively, compared to those of the composite manufactured by stir casting of the untreated-SiCp injected melt.  相似文献   

18.
用晶化的硅酸铝短纤维作增强体, 用磷酸铝作黏结剂制得预制体, 用AZ91D作基体金属, 通过挤压浸渗工艺制备镁基复合材料。通过光学显微分析、 XRD衍射分析、 SEM扫描分析等, 初步观察研究了硅酸铝短纤维增强镁基复合材料的界面反应规律和反应产物。结果表明: 用硅酸铝短纤维增强AZ91D镁合金通过浸渗挤压法制备镁基复合材料是可行的; 镁与磷酸铝黏结剂反应后在界面上生成一定数量的MgO颗粒和少量的MgAl2O4颗粒, 致使硅酸铝增强纤维和镁合金基体之间形成较强界面结合; 另外, 在硅酸铝短纤维的晶化处理过程中, 由于非晶态SiO2的析出, 导致Mg2Si脆性相在界面附近产生, 从而对该复合材料的力学性能产生一定影响。   相似文献   

19.
本文采用挤压铸造的方法制备了7075铝合金传动空心轴,研究了Al-5Ti-B及RE对挤压铸造7075铝合金铸件微观组织和力学性能的影响.结果表明:未加入细化剂的合金晶粒大小约为50μm,拉伸强度为454 MPa;加入0.29%RE的合金和1%A1-5Ti-B的合金,晶粒尺寸分别了减小到26μm和25μm,拉伸强度分别提...  相似文献   

20.
《Materials & Design》2005,26(6):479-485
The tensile and fatigue properties of zinc–aluminum alloys (ZA-8, ZA-12 and ZA-27) in squeeze and gravity cast forms have been investigated. Tensile tests were conducted at ambient and elevated temperatures up to 150 °C. At low temperatures, the ultimate tensile strength and yielding strength of the squeeze cast alloys have been found to be superior those of the gravity-cast alloys, as the temperature increased they decreased. In the same way, Brinell hardness of the squeeze cast alloys were obtained at higher values than gravity castings. The fatigue tests were performed at a constant speed of 400 rev/min and under a number of stress levels ranging from 100 to 150 MPa. The fatigue behaviour results of the ZA alloys were similar to obtained from the tensile testing. The squeeze cast alloys exhibited good fatigue resistance in proportion to the gravity castings. Metallography examinations showed that the microstructure of the castings differed according to the method of casting used. It was considered that the mechanical properties of the alloys were affected from these micro-structural changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号