首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
前驱体对C/C复合材料的致密化和性能的影响   总被引:2,自引:0,他引:2  
研究了分别以甲烷和丙烯为前驱体对制备C/C复合材料的新型ICVI工艺致密化速率及组织结构和力学性能的影响.考察了密度与致密化时间之间的变化规律和密度分布,采用偏光显微镜和扫描电镜观察材料的组织结构和试样的断口形貌,利用三点弯曲实验测定材料的弯曲强度.实验结果表明:在致密化时间100h前,以甲烷为前驱体,C/C复合材料的致密化速率比丙烯为前驱体时低,100h后致密化速率发生逆转;以甲烷为前驱体所得C/C复合材料的密度梯度小,组织结构为粗糙层,弯曲强度为250.87MPa,模量为29.29GPa;而以丙烯为前驱体所得C/C复合材料的密度梯度大,组织结构为光滑层,弯曲强度为102.75MPa,模量为11.42GPa.因此,相对而言甲烷作为制备C/C复合材料的前驱体优于丙烯.  相似文献   

2.
为分析碳源在化学气相渗透过程中的沉积机制,以碳纤维针刺整体毡为预制体,添加丙烯(C3H6)的天然气混合气体为碳源,研究了碳源组成对C/C复合材料致密化及热解炭结构的影响。结果表明:相比于以天然气为碳源,以添加了适当比例C3H6的天然气为碳源,可有效提高C/C复合材料的致密化速率及密度分布均匀性;同时,有利于生成高织构的热解炭。最优条件(9vol% C3H6)下沉积100 h后,C/C复合材料的密度和径向密度偏差分别为1.40 g/cm3和0.04 g/cm3,热解炭为均一的粗糙层结构,石墨化度高;而以天然气作碳源时,密度和径向密度偏差分别为1.17 g/cm3和0.07 g/cm3,热解炭为二元带状结构,石墨化度较低;当C3H6比例增加到17vol%时,其密度和径向密度偏差分别为1.28 g/cm3和0.10 g/cm3,密度及密度分布均匀性较最优条件下制备的复合材料明显降低。   相似文献   

3.
以可再生的资源无水乙醇为前驱体,在负压条件下,沉积温度为900℃~1200℃,采用压力梯度CVI工艺制备C/C复合材料.考察了沉积时间与密度的变化规律,采用偏光显微镜和扫描电镜观察了材料的组织结构和断口形貌,利用三点弯曲测定了材料的弯曲强度.结果表明:采用乙醇为前驱体,可大幅度提高致密化效率,96h制备出密度为1.47g/cm3的C/C复合材料;易于获得高织构的组织,制备试样的热解炭组织以粗糙层为主,断裂方式为假塑性断裂.乙醇是一种很有应用前景的制备C/C复合材料的前驱体.  相似文献   

4.
采用薄膜沸腾CVI以双热源加热的方法在900~1200℃下热解二甲苯前驱体增密二维针刺炭毡预制体,30~35h内制备出密度1.70g/cm3~1.73 g/cm3的C/C复合材料。研究致密化过程中热解炭基体的沉积速率变化规律,应用排水法和偏光显微镜分别测试材料的密度及热解炭层的厚度。结果表明,当沉积温度由900~1000℃升高至1100~1200℃时,沉积前沿的厚度拓宽,热解炭的初始沉积速率增大,但高沉积温度下预制体边缘将优先完成致密化,导致材料的平均密度由1.72~1.73g/cm3降低至1.70,致密化均匀性变差,材料轴向和径向方向的密度偏差高于0.04g/cm3。上热源开多个轴向通孔可使沉积前沿的厚度减小,前驱体在预制体内的传输效率提高,进而改善较高沉积温度下材料的致密化效果。  相似文献   

5.
为了提高C/C复合材料的致密化速率,本研究以环己烷为碳源前驱体、普通碳毡为预制体,设计了前驱体蒸发与热解碳沉积一体的沉积装置。采用液相汽化TG-CVI法快速制备C/C复合材料,并对复合材料进行2 000℃下保温2 h的高温热处理。采用偏光显微镜(PLM)、扫描电子显微镜(SEM)、X射线衍射(XRD)仪表征了复合材料的显微组织、断口形貌、物相结构及晶化程度,并采用万能试验机测试复合材料的抗弯强度。结果表明,初始密度为0. 14 g/cm3的环形预制体在温度为1 000℃及压力为20 k Pa下沉积20 h后,其平均密度可达1. 65 g/cm3;液相汽化TG-CVI的致密化速率为0. 075 5 g·cm-3·h-1,较传统ICVI提高了近一个数量级;复合材料的组织均为粗糙层热解碳,弯曲强度约为63. 24 MPa,断裂形式为假塑性断裂。复合材料经2 000℃下2 h热处理后,C(002)层间距显著减小,微晶由乱层结构向理想石墨转化,具有较高的石墨化度。  相似文献   

6.
根据热梯度化学气相渗透(CVI)工艺制备C/C复合材料的特点, 建立了均相与非均相反应的多场耦合数学模型。以2D炭毡为预制体, 天然气为前驱体, 炉压为100 kPa的工艺条件下, 通过计算获得了预制体致密化过程中密度的演变规律; 分析了沉积温度及气体流量对致密化的影响, 获得了合理的沉积温度和气体流量范围。致密化100 h后, 预制体整体密度的计算值与实验值基本一致, 径向密度分布的模拟值与实验值呈相同的变化规律, 验证了模型的可靠性和模拟的预测能力。   相似文献   

7.
以2D针刺炭毡为预制体,天然气为炭源前驱体,无稀释气体,绝对压力为10kPa,沉积温度为1100℃的工艺条件下,通过新型等温化学气相沉积工艺(ICVI),控制气体滞留时间分别为0.01, 0.02, 0.03s.研究在此超短气体滞留时间下C/C复合材料的致密化过程及密度分布,并采用偏光显微镜(PLM),扫描电子显微镜(SEM)观察其微观组织结构形貌.结果表明:在0.01s的气体滞留时间下,150h的渗透时间内可以制备出表观密度达到1.75g/cm3以上,密度呈现内高外低特点的C/C复合材料,其组织结构为中织构(MT)和高织构(HT)的双层织构,MT只在纤维表面存在且厚度小于2μm,其他均为HT组织.  相似文献   

8.
热梯度CVI制备大尺寸C/C复合材料的致密化行为   总被引:1,自引:0,他引:1  
以整体毡为纤维增强体, 采用外壁恒温控温和内壁恒温控温两种方式, 通过热梯度化学气相渗透(TG-CVI)工艺研究了大尺寸C/C复合材料的致密化行为。结果表明, 外壁恒温控温方式制备的试样密度仅为0.64 g/cm3, 呈现出两边高中间低的特点, 热解碳结构为粗糙层与光滑层相结合。而内壁恒温控温方式制备的试样密度达到0.98 g/cm3, 致密效率相比提高了73.79%, 热解碳结构为具有优异性能的粗糙层结构, 试样内部密度分布均匀。通过与外壁恒温控温相比, 内壁恒温控温方式具有较高的温度和合适的温度梯度, 致密化行为符合理想致密化模型, 能够实现大尺寸C/C复合材料由内至外的正向密度增长, 致密均匀, 致密效率高, 且碳结构优异。  相似文献   

9.
以正丙醇为前驱体,N2为载气和稀释气体,采用等温化学气相渗透(ICVI)工艺,沉积温度为1050、1100、1150℃,压力为6kPa,对初始密度为0.43g/cm3的2D针刺炭毡进行致密化,沉积96h制备出表观密度分别为1.64、1.68和1.69/cm3的C/C复合材料.考察了密度随沉积时间的变化规律,利用三点弯曲测试了材料的弯曲强度,采用偏光显微镜、扫描电子显微镜观察了材料的组织结构和断口形貌.结果表明:以正丙醇为前驱体,采用ICVI工艺在1050和1150℃下制备的试样组织为高织构和中织构的混合组织,1100℃制备的试样基体组织为均一的高织构,其弯曲强度可达199.24MPa.在本实验条件下,并未发现正丙醇中的氧元素在高温下对炭纤维的腐蚀作用,正丙醇可以作为前驱体制备高性能C/C复合材料.  相似文献   

10.
新技术制备 C/C复合材料及特性研究   总被引:3,自引:0,他引:3  
为了提高传统等温化学气相渗透(ICVI)工艺的致密化效率,降低C/C复合材料生产成本,本文通过减小预制体周围气体流动空间,将传统负压ICVI工艺加以改进.采用改进后的新型ICVI工艺,在沉积温度1100℃、沉积压力为常压和滞留时间为0.1s的实验条件下,以甲烷为前驱体,氮气为稀释气体,对纤维体积分数为28.7%的2D针刺炭毡预制体进行致密化研究,采用偏光显微镜观察所制试样的组织结构,测定了其三点弯曲强度,并利用SEM观察断面形貌.结果表明:125h制备出密度为1.73g/cm^3且密度分布均匀的C/C复合材料.试样的组织结构为粗糙层,弯曲强度为250.87MPa,模量为29.29GPa,断裂行为呈现明显假塑性.  相似文献   

11.
在沉积温度为1080--1200℃、沉积总压力为10 kPa和气体滞留时间为0.01 s的条件下, 以天然气为碳源, 以氮气为载气, 使用新型ICVI工艺对预制体初始密度为0.43 g/cm$^{3}$(纤维体积分数25%)的2D针刺整体炭毡进行致密化,
在150 h内制备出表观密度为1.75 g/cm3的C/C复合材料. 用偏光显微镜和高分辨扫描电镜观察了热解碳基体的微观组织结构, 分析了三点弯曲试样的断口形貌. 结果表明: 制备的C/C复合材料具有粗糙层(RL)组织结构, 试样的弯曲强度为164.77 MPa、模量为21.34 GPa, 表现为阶梯式失效, 断裂行为呈现出明显的假塑性.  相似文献   

12.
以自烧结性中间相沥青炭微球(MCMB)为基体,以沥青基磨碎炭纤维为增强体,采用简单的氧化处理、混合、热压成型、炭化等工艺一步制备C/C复合材料。研究了MCMB氧化处理深度对C/C复合材料的密度、失重、体积收缩率、弯曲强度及断面形态的影响。结果表明:C/C复合材料的密度和体积收缩率均较无炭纤维添加的炭块有所下降,当添加的炭纤维氧化程度足够深时,炭材料的抗弯强度得到明显提高;随着MCMB氧化时间的延长,C/C复合材料的断面逐渐变得平整;经250℃氧化60 min的MCMB与硝酸90℃氧化10h的炭纤维混合,热压成型后1000℃炭化1h得到的C/C复合材料的密度可达1.64 g/cm3,抗弯强度可达72.0 MPa。与现行的制备C/C复合材料的方法相比,本技术具有工艺简单、制备成本低廉等特点,是一种具有很大发展潜力的制备高性能C/C复合材料的新方法。   相似文献   

13.
C/C复合材料与石墨材料干态摩擦磨损行为   总被引:1,自引:0,他引:1       下载免费PDF全文
在M-2000型摩擦磨损实验机上,以GCr15钢为配副,对石墨材料和C/C复合材料在干态条件下的滑动摩擦进行研究。结果表明:C/C复合材料的摩擦系数和体积磨损均比石墨材料的低。具有光滑层炭结构 (SL) 的C/C复合材料的摩擦系数和体积磨损量比具有粗糙层结构 (RL) 的C/C复合材料低;低密度石墨的摩擦系数和体积磨损量比高密度石墨材料高。随时间延长,RL结构的C/C复合材料摩擦系数在60、80、200 N时有小幅度的增长,另三种则下降; SL结构的C/C复合材料摩擦系数除60 N外基本保持平稳;石墨材料的摩擦系数随时间延长表现出增长趋势。SEM观察表明: RL结构的C/C复合材料摩擦表面随载荷增加而趋向完整,SL结构的C/C复合材料的摩擦表面随载荷增加变化不大。而高密度石墨摩擦表面比密度低的石墨完整。C/C复合材料比石墨更适宜用作航空发动机轴间密封材料。   相似文献   

14.
C/C复合材料等温CVI工艺Mamdani模糊系统建模   总被引:4,自引:0,他引:4  
利用隶属函数表征了碳/碳(C/C)复合材料CVI工艺各主要影响因素,基于Matlab模糊逻辑工具箱,建立了C/C复合材料等温CVI工艺Mamdani模糊系统模型,分析了沉积温度、沉积时间、预制体纤维体积分数和前驱碳氢气体与稀释气体的比率对制件密度的影响。预制体纤维体积分数是直接影响材料的密度和其它性能的因素;CVI工艺受热解化学反应和前驱气体扩散两个主要过程的控制,沉积温度或前驱碳氢气体比率升高,能够加快热解化学反应速度,使沉积速率在沉积前期(t<300h)具有较高的值,但导致材料的密度梯度增大,使后期沉积极为困难。  相似文献   

15.
以丙烯为碳源, FeCl3·6H2O为催化剂, 采用化学气相沉积法(CVD)在碳毡和不同密度的C/C复合材料上原位气相生长碳纤维(VGCFs) , 并以含原位生长VGCFs的碳毡和不同密度的C/C复合材料为基体制备VGCFs-C/C复合材料。研究了反应压力、基体密度对VGCFs生长情况的影响, 借助扫描电镜(SEM)、光学显微镜观察原位生长VGCFs的形貌及基体原位生长VGCFs后热解炭形貌的变化, 并对比研究了C/C复合材料和VGCFs-C/C复合材料的弯曲性能。研究结果表明, 反应压力为3700 Pa, 基体密度低的情况更有利于VGCFs的生长; 原位生长的VGCFs改变了纤维表面热解炭的沉积形貌, 使得热解炭和碳纤维的结合面之间形成具有铆钉作用的球状结构, 增强了界面结合力, 从而提高了原位生长的高VGCFs含量样品的弯曲强度。  相似文献   

16.
碳/碳复合材料的宽温域自愈合抗氧化   总被引:1,自引:0,他引:1  
在前期碳材料自愈合抗氧化研究的基础上,提出了通过多元陶瓷基体改性赋予碳/碳复合材料在较宽温度范围内实现自愈合抗氧化的基本原理和技术方案,分析了B4C—SiC、ZrC—SiC和ZrB2-ZrC—SiC等多元陶瓷的抗氧化机理,并采用新近合成的ZrB2-ZrC—SiC三元复相陶瓷有机前驱体,通过PIP技术制备了一系列超高温复相陶瓷改性的碳/碳复合材料,研究了该类复合材料在2200℃以下高速气流冲蚀环境中的协同抗氧化和抗烧蚀性能,发现材料表面生成的复合氧化物层能够在一定条件下赋予复合材料自愈合抗氧化能力。  相似文献   

17.
以高温煤沥青为浸渍剂,国产PAN基炭纤维编织的轴棒法预制体为增强材料,采用浸渍炭化致密工艺制备了沥青基炭/炭(C/C)复合材料,考察不同制备步骤下预制体致密效率的变化情况,并用扫描电子显微镜观察了C/C复合材料及基体炭的微观形貌。研究表明,随循环次数的增多,材料密度逐渐增大,密度增量逐渐减小;中间石墨化处理略微降低材料的密度,但材料的最终密度可大于1.90g/cm3。通过显微镜发现沥青基C/C复合材料内部在微观上仍存在少量裂纹和孔隙,基体炭的形态主要有区域型、流线型和镶嵌型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号