首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Fatigue criteria that belong to the critical plane class necessitate unambiguous definitions of the amplitude and mean value of the shear stress acting on a material plane. This is achieved through the construction of the minimum circle circumscribing the path described by the tip of the shear stress vector on each plane. By definition, the centre and the radius of this circle provide the mean shear stress and the shear stress amplitude, respectively. The search of the minimum enclosing circle is an optimisation problem for which efficient numerical solution schemes are required. Several algorithms exist for similar situations; however these are not necessarily related to the fatigue strength of metals. In this paper some algorithms are studied to assess their computational efficiency within the engineering framework of the application of fatigue criteria of the critical plane type.  相似文献   

2.
Fatigue life criteria are tools used for engineering and designing against fatigue. Even if computers capacities increase more and more, the complex geometry of mechanical components treated nowadays require to improve the swiftness of the calculations realized in any point of the structure. This paper contains two proposals concerning the computation of the most commonly used fatigue criteria, whatever their formulation is based upon the critical plane concept or upon a global approach. The application of many fatigue criteria requires to examine all the material planes passing through the considered point either to find out the critical plane or to make some average of stress quantities over all of them. In both cases, all the possible oriented planes have to be explored. The first proposal deals with the way to obtain an homogeneous distribution of the orientation of the practically considered planes. The second proposal of this paper concerns the determination of the smallest circle surrounding to the loading path that describes the tip of the shear stress vector acting on a material plane during one stress cycle. The mean shear stress is determined by the centre of this circle; the shear stress amplitude and the alternate component of the shear stress are established from this circle also. The principles of these two proposals are explained in detail and the algorithms for the fastest calculations are given. The efficiency of the new proposals relatively to what is commonly realized is assessed in terms of time saving.  相似文献   

3.
Abstract— A modification to Brown and Miller's critical plane approach is proposed to predict multiaxial fatigue life under both in-phase and out-of-phase loading conditions. The components of this modified parameter consist of the maximum shear strain amplitude and the maximum normal stress on the maximum shear strain amplitude plane. Additional cyclic hardening developed during out-of-phase loading is included in the normal stress term. Also, the mathematical formulation of this new parameter is such that variable amplitude loading can be accommodated. Experimental results from tubular specimens made of 1045 HR steel under in-phase and 90° out-of-phase axial-torsional straining using both sinusoidal and trapezoidal wave forms were correlated within a factor of about two employing this approach. Available Inconel 718 axial-torsional data including mean strain histories were also satisfactorily correlated using the aforementioned parameter.  相似文献   

4.
F. Cosmi  M. Hoglievina 《Strain》2010,46(2):148-158
Abstract: A recent numerical method, the cell method, was applied for the dynamic analysis of an L‐shaped steel plate subjected to a sinusoidal load. The calculated stress time histories were post‐processed in order to assess fatigue life under four different high‐cycle fatigue criteria: two formulations of the equivalent Von Mises approach and two critical plane methods. The latter require the definition of amplitude and mean value of the shear stress acting on a material plane: when considering periodic stress histories, this is commonly achieved by the construction of the minimum circumscribed circle (MCC), encompassing the shear stress load path on the assumed fracture plane. In this study, a novel algorithm to determine the MCC has also been proposed and applied. The fatigue life assessment results were discussed and compared to point out the relevant characteristics of each method.  相似文献   

5.
A multiaxial fatigue criterion for random loading   总被引:2,自引:1,他引:1  
ABSTRACT A multiaxial fatigue criterion for random loading is proposed. Firstly, the orientation of the critical plane, where fatigue life estimation is carried out, is determined from the weighted mean position of the principal stress directions. Then, the scalar value of the normal stress vector N (t) perpendicular to the critical plane is taken as the cycle counting variable since the direction of such a vector is fixed with respect to time (conversely to the time‐varying direction of the shear stress vector C (t)), and a nonlinear combination of normal and shear stress components acting on the critical plane is used to define an equivalent stress amplitude. Finally, a damage accumulation model is employed to process such an equivalent stress amplitude and to determine fatigue endurance. This criterion is herein applied to some relevant random fatigue tests (proportional bending and torsion).  相似文献   

6.
This paper investigates the accuracy of the so-called Modified Manson–Coffin Curve Method (MMCCM) in estimating fatigue lifetime of metallic materials subjected to complex constant and variable amplitude multiaxial load histories. The MMCCM postulates that fatigue damage is maximised on that material plane experiencing the maximum shear strain amplitude. In the present investigation, the orientation of the critical plane was determined through that direction along which the variance of the resolved shear strain reaches it maximum value. Under variable amplitude complex load histories, this direction was also used to count the resolved shear strain cycles via the classic Rain-Flow method. Further, the degree of multiaxiality and non-proportionality of the time-variable stress states at the assumed critical locations was directly quantified through a suitable stress ratio which accounts for (i) the mean value and the variance of the stress perpendicular to the critical plane as well as for (ii) the variance of the shear stress resolved along the direction experiencing the maximum variance of the resolved shear strain. The accuracy and reliability of the proposed approach was checked against approximately 650 experimental data taken from the literature and generated by testing un-notched metallic materials under complex constant and variable amplitude multiaxial load histories. The sound agreement between estimates and experimental results which was obtained strongly supports the idea that the proposed design technique is a powerful engineering tool allowing metallic materials to be designed against constant and variable amplitude multiaxial fatigue by always reaching a remarkable level of accuracy. This approach offers a complete solution to the strain based multiaxial fatigue problem.  相似文献   

7.
The Gough test data on fatigue under combined bending and twisting with superimposed mean bending and torsion stresses with and without stress raisers has been re-investigated in terms of the stresses acting on the plane of maximum range of shear stress. It has been shown that the allowable amplitude of shear stress on this plane can be predicted from an equation of the form τa= [t - c1 (Kt×σa)1.5?c2σ2m]/Kt where σa and σm are the normal stress amplitude and mean normal stress respectively on the plane of maximum range of shear stress, c1 and c2 are defined material constants and Kt is the theoretical stress concentration factor.  相似文献   

8.
Multiaxial high cycle fatigue criteria based on the critical plane approach necessitate unambiguous definitions of the amplitude and mean value of the shear stress (τa and τm) acting on the material planes. Four of the existing definitions relate the values of τa and τm to a geometrical element of the curve described by the tip of the shear stress vector (curve Ψ), respectively, the radius of the Minimum Circumscribed Circle, the Longest Chord, the Longest Projection, the diagonal of the Maximum Rectangular Hull (MRH).In this paper a critical assessment of the above definitions is proposed, focusing on that based on the concept of MRH, which is the most recently developed. The main issues of the comparison are the uniqueness of the solution in the determination of τa and τm, the ability to differentiate proportional and non-proportional stresses, the differences of the values of τa obtained by each of the 4 methods for differently shaped curves Ψ.  相似文献   

9.
Several groups of fatigue damage parameters are discussed and then an improved multiaxial high‐cycle fatigue criterion based on critical plane defined by the plane of maximum shear stress range is presented in this paper. A compromising solution to consider the mean normal stress acting on the critical plane is also proposed. The new fatigue criterion extends the range of metallic materials which is valid for the ratio 1.25 < f?1/t?1 < 2. The predictions based on the presented model show a good agreement with test data.  相似文献   

10.
One of the important issues in assessing multiaxial fatigue damage is interactions between different components of stress such as normal and shear stresses. The present study investigated this interaction effect on the fatigue behavior of materials with shear failure mode when subjected to multiaxial loading conditions. A method is introduced to model this interaction based on the idea that two types of influence are caused by the normal stress acting on the critical plane orientation. These two types of influence are affecting roughness induced closure, as well as fluctuating normal stress which affects the growth of small cracks in mode II. Shear‐based critical plane damage models which use normal stress as a secondary input, such as FS damage model, could then use the summation of these terms. In order to investigate the effect of the method, constant amplitude load paths with different levels of interaction between the normal and shear stresses, as well as variable amplitude tests with histories both taken from service loading conditions and generated using random numbers were designed for an experimental program. The proposed method was observed to result in improved fatigue life estimations where significant interactions between normal and shear stresses exist.  相似文献   

11.
Based on the critical plane approach, a new path‐dependent multiaxial fatigue model in low‐cycle fatigue is proposed. The proposed model includes damage contribution from four sources: the normal strain amplitude, the shear strain amplitude on the critical plane, the hydrostatic mean strain and a new path‐dependent factor. The effect of mean strain is considered by the hydrostatic mean strain. The experimental data of 11 kinds of materials are used to demonstrate the effectiveness of this new model under both zero and non‐zero mean strain multiaxial loading path.  相似文献   

12.
A weight function method for the determination of the critical plane is here proposed for the case of specimens under combined bending and torsion in the high cycle fatigue regime. The critical plane is assumed to be coincident with the mean maximum absolute shear stress plane, which is calculated by averaging the instantaneous angle between the specimen axis and the normal to the maximum absolute shear stress plane. Two kinds of weight functions are proposed to determine such a plane. The proposed method to determine the critical plane is verified by employing fatigue data available in the literature in terms of experimental fracture planes, and the multiaxial fatigue life is also predicted by a reformulation of the criterion proposed by Carpinteri et al. to verify the determined critical plane. The results show that the proposed method can be applied to determine the critical plane under both constant and variable amplitude loading.  相似文献   

13.
The present paper is concerned with the use of the modified Wöhler curve method (MWCM) to estimate both lifetime and high‐cycle fatigue strength of plain engineering materials subjected to complex load histories resulting, at critical locations, in variable amplitude (VA) multiaxial stress states. In more detail, when employed to address the constant amplitude (CA) problem, the MWCM postulates that fatigue damage reaches its maximum value on that material plane (i.e. the so‐called critical plane) experiencing the maximum shear stress amplitude, fatigue strength depending on the ratio between the normal and shear stress components relative to the critical plane itself. To extend the use of the above criterion to those situations involving VA loadings, the MWCM is suggested here as being applied by defining the critical plane through that direction experiencing the maximum variance of the resolved shear stress. Such a direction is used also to perform the cycle counting: because the resolved shear stress is a monodimensional quantity, stress cycles are directly counted by the classical rain‐flow method. The degree of multiaxiality and non‐proportionality of the time‐variable stress state at the assumed critical sites instead is suggested as being measured through a suitable stress ratio which accounts for the mean value and the variance of the stress perpendicular to the critical plane as well as for the variance of the shear stress resolved along the direction experiencing the maximum variance of the resolved shear stress. Accuracy and reliability of the proposed approach was checked by using several experimental results taken from the literature. The performed validation exercise seems to strongly support the idea that the approach formalized in the present paper is a powerful engineering tool suitable for estimating fatigue damage under VA multiaxial fatigue loading, and this holds true not only in the medium‐cycle, but also in the high‐cycle fatigue regime.  相似文献   

14.
Many multi‐axial fatigue limit criteria are formalized as a linear combination of a shear stress amplitude and a normal stress. To identify the shear stress amplitude, appropriate conventional definitions, as the minimum circumscribed circle (MCC) or ellipse (MCE) proposals, are in use. Despite computational improvements, deterministic algorithms implementing the MCC/MCE methods are exceptionally time‐demanding when applied to “coiled” random loading paths resulting from in‐service multi‐axial loadings and they may also provide insufficiently robust and reliable results. It would be then preferable to characterize multi‐axial random loadings by statistical re‐formulations of the deterministic MCC/MCE methods. Following an early work of Pitoiset et al., this paper presents a statistical re‐formulation for the MCE method. Numerical simulations are used to compare both statistical re‐formulations with their deterministic counterparts. The observed general good trend, with some better performance of the statistical approach, confirms the validity, reliability and robustness of the proposed formulation.  相似文献   

15.
Abstract— In this paper, the behaviour of the LEFM strip-yield model proposed by Newman and implemented in the FASTRAN II computer program is analyzed. The capabilities of the model to predict crack growth life under variable amplitude loading is considered. Special attention is paid to the effect of the constraint factors used to consider the stress condition (plane stress to plane strain), the effect of the finite length loading sequence and the effect of overloads into an irregular loading history. The results of simulation for 30 different loading histories obtained from the same stationary random process are analyzed and compared with the experimental results obtained for 2024-T351 aluminium alloy. The simulated lives present a fairly good fit with the experimental results, with a strong influence of the constraint factor selected and of the maximum peak in the loading history. Although predictions are usually good, it has been found that for any constraint factor producing good life predictions (with respect to the mean value of the Life obtained with the 30 loading histories) the results of each particular simulation may be over- or under-conservative depending on the maximum peak in the loading history used.  相似文献   

16.
A measure of shear stress amplitude based on a combination of resolved shear stress amplitudes on two perpendicular directions of a material plane is investigated in this paper. This measure is very fast to calculate. Hence, it turns unnecessary numerical schemes to accelerate the critical plane search, as well as it enables to significantly reduce the processing time of finite element based fatigue calculations, even when small angle increments are used. Findley’s relationship with the proposed shear stress amplitude provided estimates within a ±15% error interval for published fatigue limits obtained under proportional and non-proportional multiaxial loadings. The accuracy and computational cost of the approach are compared with those obtained with other measures of shear stress amplitude available in the literature.  相似文献   

17.
A STUDY ON FATIGUE CRACK GROWTH UNDER OUT-OF-PHASE COMBINED LOADINGS   总被引:1,自引:0,他引:1  
Abstract— Fatigue tests were performed on thin-walled tubular specimens of S45C steel under tension-compression, pure torsion, in-phase and out-of-phase axial-torsional loadings. The relationship between cracking behaviour and stress components on the crack plane was investigated. Measurement of microcrack density showed that microcracking was governed predominantly by the shear stress amplitude acting on the crack plane for all loading conditions. The failure crack was formed by coalescence of many cracks initiated near the maximum shear planes. The cracks grew turning their orientation to the direction perpendicular to the maximum normal stress. The transition of crack orientation occurred at relatively longer crack lengths at a higher stress ratio. The crack growth behaviour for all loading modes can be correlated using an equivalent strain intensity parameter based on shear and normal strains on the crack plane.  相似文献   

18.
Strain-based multiaxial fatigue damage modelling   总被引:1,自引:0,他引:1  
A new multiaxial fatigue damage model named characteristic plane approach is proposed in this paper, in which the strain components are used to correlate with the fatigue damage. The characteristic plane is defined as a material plane on which the complex three‐dimensional (3D) fatigue problem can be approximated using the plane strain components. Compared with most available critical plane‐based models for multiaxial fatigue problem, the physical basis of the characteristic plane does not rely on the observations of the fatigue crack in the proposed model. The cracking information is not required for multiaxial fatigue analysis, and the proposed model can automatically adapt for different failure modes, such as shear or tensile‐dominated failure. Mean stress effect is also included in the proposed model by a correction factor. The life predictions of the proposed fatigue damage model under constant amplitude loading are compared with a wide range of metal fatigue results in the literature.  相似文献   

19.
This paper summarizes an attempt at proposing a new engineering method suitable for estimating the fatigue lifetime of steel‐ and aluminium‐welded connections subjected to variable amplitude multiaxial fatigue loading. In particular, the proposed approach is based on the use of the so‐called Modified Wöhler Curve Method (MWCM), i.e. a bi‐parametrical critical plane approach, whose accuracy has been checked so far solely in addressing the constant amplitude multiaxial fatigue problem. In order to extend the use of our criterion to variable amplitude situations, the critical plane is suggested here as being determined by taking full advantage of the maximum variance concept, that is, such a plane is assumed to be the one containing the direction along which the variance of the resolved shear stress reaches its maximum value. The main advantage of such a strategy is that the cycle counting can directly be performed by considering the shear stress resolved along the maximum variance direction: by so doing, the problem is greatly simplified, allowing those well‐established cycle counting methods specifically devised to address the uniaxial variable amplitude problem to be extended to those situations involving multiaxial fatigue loading. The validity of the proposed methodology was checked by using two different datasets taken from the literature and generated by testing both steel and aluminium tube‐to‐plate welded connections subjected to in‐phase and 90° out‐of‐phase variable amplitude bending and torsion. This new fatigue life assessment technique was seen to be highly accurate allowing the estimates to fall within the calibration scatter bands not only when the constants in the governing equations were calculated by using the experimental uniaxial and torsional fully reversed fatigue curves, but also when they were determined by using the reference curves supplied, for the investigated geometry, by the available standard codes. These results seem to strongly support the idea that, thanks to its peculiar features, our method can be considered as an effective engineering approach capable of performing multiaxial fatigue assessment under variable amplitude loading which fully complies with the recommendations of the available standard codes.  相似文献   

20.
The plane with the maximum variance of the resolved shear stress is taken as the critical plane. Two algorithms are used along with the maximum variance method (MVM) to determine the orientation of the critical plane. The maximum variance of the normal stress on the potential critical planes is calculated to determine the one experiencing the maximum extent of fatigue damage. A new multiaxial cycle counting method is proposed to count cycles on the critical plane. The modified Wöhler curve method is used to assess fatigue damage. About 200 experimental results were collected from the technical literature to validate the approaches being proposed. The results show that the improved design technique being proposed is successful in assessing fatigue damage under variable amplitude multiaxial cyclic loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号