首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王海锋  程远平 《煤炭学报》2010,35(4):590-594
为确保近距离上保护层工作面的开采安全,同时有效抽采下被保护层的卸压瓦斯消除其突出危险性,开展了近距离上保护层开采工作面的瓦斯涌出规律研究,在此基础上对被保护层的卸压瓦斯抽采参数进行了优化。研究结果表明:下被保护层12煤层位于上保护层开采后形成的底臌断裂带内,层间裂隙发育充分,保护层工作面瓦斯涌出量大多来自被保护层的卸压瓦斯;在采用底板岩巷上向网格式穿层钻孔对被保护层进行卸压瓦斯抽采时,被保护层卸压瓦斯流向保护层工作面还是穿层钻孔由瓦斯在裂隙中流动形成的沿程阻力决定;被保护层12煤层穿层钻孔间距确定为1倍层间距大小,即穿层钻孔间距为16 m。工程应用表明,该设计参数能够满足保护层安全开采及被保护层消除突出危险性的要求。  相似文献   

2.
为解决深部近距离上保护层开采被保护层大量卸压瓦斯通过底板裂隙涌向首层采煤工作面极易造成瓦斯超限的问题,以平顶山天安煤业股份有限公司五矿为研究背景,采用理论分析、实验室实验、现场考察以及离散元数值模拟的手段,研究了深部近距离上保护层开采底板煤岩层裂隙瓦斯通道演化规律及下被保护层卸压瓦斯抽采时效性。研究表明:回采方向上底板煤岩层可分为原始应力区、卸压增透区和重新压实区,卸压增透区内煤体膨胀变形量大渗透率高,卸压瓦斯解吸扩散,底板采动裂隙使被保护层与采煤工作面贯通形成裂隙瓦斯通道。时间尺度上,卸压增透区的形成与上保护层回采到基本顶来压垮落时间段相对应,采动裂隙瓦斯通道伴随基本顶的破断垮落逐渐重新压实消失,卸压增透区范围在基本顶初次垮落前达最大值,回采推进期间与基本顶来压步距正相关。重新压实区域内煤岩层经历应力加载、卸荷、重新加载后可能出现损伤破坏,卸压瓦斯大量解吸引起煤体收缩变形,部分煤岩体受力比其原始应力更大出现压缩变形。卸压增透区是卸压瓦斯产生及运移的主要空间,也是进行卸压瓦斯拦截及抽采的高效区,瓦斯抽采工程需考虑采动裂隙演化的空间和时间效应。  相似文献   

3.
刘树轮  韩思华 《煤炭与化工》2023,(9):112-114+118
根据赤峪煤矿近距离煤层群开采及瓦斯含量在10 m3/t以上等特殊条件,采用近距离煤层群底板拦截钻孔抽采回采工作面卸压瓦斯技术,利用在3号煤层的掘进巷道施工拦截钻孔,拦截钻孔抽采3号、4号煤层卸压瓦斯,降低回采过程中3号、4号煤层卸压瓦斯涌入2号煤层采空区的量。该技术通过在赤峪煤矿中央采区C1204工作面试验结果表明,底板拦截钻孔抽采回采工作面卸压瓦斯技术可替代底板抽采巷施工底板卸压钻孔,不仅有效的降低煤层瓦斯含量、压力,保证了工作面安全生产,同时节省了底板抽采巷因变形严重需要维修的费用。  相似文献   

4.
孙家伟  杨胜强  武帅 《中州煤炭》2012,(1):85-86,96
为了解决淮南矿业集团新庄孜煤矿62114保护层采场瓦斯问题,提出了Y型通风条件下近距离保护层采场瓦斯抽采新思路。在62114保护层采场实施了煤层底板运输巷上行网格式穿层钻孔抽采下被保护层卸压瓦斯技术;同时在62114保护层工作面回风巷(沿空留巷)实施了上行穿层钻孔抽采采空区顶板岩层间瓦斯,下行穿层钻孔抽采采空区底板岩层间瓦斯;并且对62114保护层工作面采空区瓦斯进行埋管预抽,配合高抽巷对采空区瓦斯进行抽采。现场应用表明:Y型通风条件下近距离保护层采场瓦斯抽采成功解决了62114保护层采场瓦斯问题,实现了煤与瓦斯共采。  相似文献   

5.
采用理论、数值模拟综合方法,研究了中远距离上保护层开采底板应力场演化、分布规律,发现上保护层长壁式开采采空区底部煤岩层倾斜方向呈凹形、走向平面呈"O"形的卸压球壳,卸压角在其切眼或终采线附近隅角处最小,底部被保护范围煤层的中部卸压效果比两侧的卸压效果佳,即被保护范围煤层倾斜中部的抽采半径比两侧的抽采半径要大;在走向上被保护层卸压滞后保护层采煤工作面一定距离,可以此研究成果指导被保护层钻孔瓦斯抽采工作。  相似文献   

6.
为高效抽采中梁山南矿急倾斜近距离上保护层开采后的卸压瓦斯,开展了急倾斜近距离上保护层开采卸压瓦斯运移规律研究,利用保护层开采产生的"卸压增透效应",结合该矿实际情况,对被保护层的卸压瓦斯抽采参数进行了优化。  相似文献   

7.
近距离上保护层开采瓦斯治理技术   总被引:6,自引:0,他引:6  
在平煤天安五矿对近距离保护层开采进行了探索性实践,结果表明,在近距离保护层巷道掘进期间,采用浅孔抽放、邻近层抽放和底板抽放相结合的立体瓦斯抽放方法,实现了近距离保护层的安全快速掘进;在回采期间,采用U型通风,且采用2趟上隅角抽放,一台抽出式风机抽放,并在采煤工作面实施了浅孔瓦斯抽放且瓦斯浓度频频超限的情况下,将通风系统改为"两进一回"的Y L型通风方式,使平均日产量由原来的800 t提高到1 700 t,彻底解决了近距离保护层回采期间的瓦斯超限问题.  相似文献   

8.
近距离煤层瓦斯防治过程中采用设置保护层对被保护层进行瓦斯抽放,并利用上层煤开采过程中底板发育裂隙对被保护层析出瓦斯进行疏散。基于此理论,结合3527工作面上保护层工作面情况,制定了瓦斯抽放钻孔,并通过钻孔抽放瓦斯浓度及抽采纯量等参数对瓦斯抽放效果进行分析,确定此种方法,对下层煤瓦斯的治理具有明显效果。  相似文献   

9.
蛇形山煤矿开采的所有煤层均有严重的突出危险性,在采用开采下保护层和底板瓦斯巷预抽保护层煤层瓦斯等区域防突措施的过程中,因受采动影响邻近层瓦斯大量解吸,沿采动裂隙涌入保护层工作面,高浓度瓦斯经常造成保护层工作面回风流瓦斯超限,严重制约矿井的安全生产。针对该矿风巷尾巷采空区埋管抽放瓦斯和工作面风巷下部掘补充风巷等措施的不足,省内首次进行工作面(2341)风巷走向高位钻孔抽采邻近层瓦斯试验,研究表明,高位钻孔抽采邻近层瓦斯,能彻底解决在风巷建气室抽放和回风流瓦斯超限等问题,日抽采综合利用瓦斯1500 m3以上,回风巷瓦斯浓度下降幅度达50%,在经济效益、社会效益和安全效益上取得显著效果,可供类似条件的矿井参考。  相似文献   

10.
保护层开采时,对被保护层的瓦斯治理是一项非常重要的工作,本文通过保护开采时,对下伏被保护层瓦斯进行分源治理,在底板巷合理的钻孔布置与抽采设计,做到了底板卸压瓦斯抽采最大化,实现了煤与瓦斯共采。  相似文献   

11.
12.
基于潘三矿13-1煤层的赋存条件,介绍了潘三矿地面钻孔抽采被保护层卸压瓦斯试验过程,研究了地面钻孔瓦斯抽采量、瓦斯抽采率及抽采后的残余瓦斯压力和瓦斯含量等4个方面。结果表明:保护层开采使得6个钻井累计瓦斯抽采量达到8105335m3,平均瓦斯抽采率达到54.1%,瓦斯抽采后煤层中残余瓦斯压力为0.21MPa,残余瓦斯含量为2.07m3/t,均低于《防治煤与瓦斯突出规定》中规定的临界数值,防突效果显著。  相似文献   

13.
大隆矿S11201工作面为二水平保护层首采工作面,工作面距被保护层13#煤层平均距离11.17 m,通过对工作面瓦斯来源分析,采用合理配风及分源立体抽采治理的瓦斯治理技术,工作面配风量1 000 m3/min,瓦斯抽采量33.2 m3/min,瓦斯抽采率86.7%,通过对瓦斯治理效果进行分析,对存在的问题提出相应的整改方案,保证了工作面安全生产。  相似文献   

14.
针对沙曲矿近距离煤层群开采中的瓦斯防治问题,综合运用理论分析、数值模拟的方法对保护层开采时底板卸压效果进行分析,结合塑性区的发育形态编写fish语言获取被保护层中渗透系数的变化规律,并用于工程实践。结果表明:在2号煤层作为保护层开采的情况下,底板卸压深度可达20~36m,大于3+4号煤层与3号煤层之间的最大垂直距离,3+4号煤在上煤层的保护范围内|随着保护层的开采,被保护层渗透性系数明显提高,最大值可以达到5.2,虽然随着工作面推进覆岩垮落,渗透性系数会有所回落,但与初始值相比依然有较大提升|在2号煤层的回采时,对底板穿层钻孔进行了瓦斯浓度实测,钻孔中瓦斯浓度最大值可达到70%,抽采效果良好。  相似文献   

15.
针对沙曲矿近距离煤层群开采中的瓦斯防治问题,综合运用理论分析、数值模拟的方法对保护层开采时底板卸压效果进行分析,结合塑性区的发育形态编写fish语言获取被保护层中渗透系数的变化规律,并用于工程实践。结果表明:在2号煤层作为保护层开采的情况下,底板卸压深度可达20~36m,大于3+4号煤层与3号煤层之间的最大垂直距离,3+4号煤在上煤层的保护范围内|随着保护层的开采,被保护层渗透性系数明显提高,最大值可以达到5.2,虽然随着工作面推进覆岩垮落,渗透性系数会有所回落,但与初始值相比依然有较大提升|在2号煤层的回采时,对底板穿层钻孔进行了瓦斯浓度实测,钻孔中瓦斯浓度最大值可达到70%,抽采效果良好。  相似文献   

16.
针对东庞矿近距离煤层综采工作面瓦斯涌出量大的问题,以千米钻机定向钻进技术及其配套装备为依托,进行了高位定向长钻孔近距离煤层瓦斯抽采技术试验研究。试验过程中,发现因煤层间距较小,钻孔施工穿越上部煤层而导致的卡钻、塌孔现象是该项技术实施的难点之一。高位定向长钻孔可同时抽采本煤层和邻近煤层的泄压瓦斯,瓦斯抽采流量和纯度高。高位定向长钻孔和普通高位钻孔相比,单孔平均抽采纯量是普通高位钻场的3倍以上;当处于稳定阶段后,其抽采总量高于普通高位钻孔,基本稳定在5~6 m3/min。该项技术用于工作面上隅角瓦斯治理,效果明显。  相似文献   

17.
为了考察煤层顶底板岩性对瓦斯抽采的影响,基于含瓦斯煤流固耦合方程,利用COMSOL Multiphysics软件对透气和不透气2种顶底板岩层进行了钻孔瓦斯抽采数值模拟,其中透气性顶底板岩层孔隙率设置为20%,不透气性顶底板岩层孔隙率设置为0。研究结果表明,不同顶底板岩性条件下在抽采过程中瓦斯总是沿钻孔径向流动,但煤层顶底板岩性对煤层瓦斯流场有明显影响;不同顶底板岩性条件下钻孔瓦斯抽采时间越长,钻孔影响的范围越大,同时距离钻孔中心越远煤层残存瓦斯含量越大,但透气岩层模型的瓦斯压力衰减更快,残存瓦斯压力更低;顶底板岩性对煤层瓦斯抽采有效范围有显著影响,与不透气岩层相比,透气岩层的钻孔有效抽采范围更大。研究结果对穿层钻孔瓦斯抽采具有一定的指导意义。  相似文献   

18.
为有效解决青龙煤矿21602工作面采煤期间上隅角瓦斯浓度超限问题,利用定向钻进技术的轨迹可控、覆盖区域广等优势,在21602工作面布置高位定向长钻孔抽采采动卸压瓦斯。介绍了高位定向长钻孔瓦斯抽采技术原理,分析了钻孔布置层位及设计方案,通过现场实践确定了21602工作面高位定向长钻孔优先布置在顶板距离煤层16~28 m区域。实践表明,21602工作面采煤期间上隅角瓦斯浓度由抽采前的最高值0.72%降低到抽采期间的0.20%~0.40%,单孔抽采瓦斯纯流量达1.58 m3/min,有效保证了工作面的高效安全回采,可为近距离煤层群上隅角瓦斯治理提供经验。  相似文献   

19.
以桑树坪煤矿远距离下保护层11~#煤层开采保护主采3#煤层为研究对象,利用底板巷布置上向穿层网格式钻孔抽采被保护层卸压瓦斯,研究得出将3314底板瓦斯抽放巷布置在3#煤层底部法距15 m处较为合理。实际抽采数据表明,在远距离下保护层开采期间,采动影响能够有效卸压,提高被保护层的透气性,底抽巷预抽区域瓦斯预抽率约为65.6%。从卸压瓦斯抽采效果分析,11#煤层回采后保护层工作面前方10 m至保护层工作面后方60 m范围内对应的上覆3#煤层区域为最佳卸压瓦斯抽采区域。  相似文献   

20.
 为确保近距离保护层工作面的生产安全,采用分源预测方法对罗州煤矿首采工作面瓦斯涌出规律进行分析,研究表明本煤层瓦斯涌出占16.9%,上邻近层瓦斯涌出占50.7%,下邻近层瓦斯涌出占32.4%。在此基础上对罗州煤矿瓦斯抽采方案进行优化设计,首采工作面采用本煤层顺层平行斜交钻孔、采空区埋管抽采结合通风稀释瓦斯,上邻近层采用高抽巷抽采环形裂隙圈内高浓度瓦斯,下邻近层采用底板穿层钻孔抽采底臌断裂带和底臌变形带内的卸压解吸瓦斯。通过保护层卸压开采配合卸压瓦斯强化抽采方法,降低了卸压煤层瓦斯含量,消除了被保护层煤与瓦斯突出危险性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号