首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A natural shale and four synthetic organoclays were compared as potential sorbent additives to containment barriers at hazardous waste sites. Trimethylphenyl ammonium bentonite (TMPA-bent) was shown in batch experiments to have the greatest sorption capacities for 1,2,4-trichlorobenzene, trichloroethylene, and methyl isobutyl ketone, followed by the shale and a commercial organoclay. Sorption capacities were lowest for hexadecyltrimethyl ammonium bentonite (HDTMA-bent) and hexadecyl pyridinium bentonite (HDP-bent). Operative sorption mechanisms for the organoclays depended on the size of the organic modifier, i.e., uptake by the TMPA-bent occurred via adsorption onto mineral surfaces, while that for the HDTMA-bent and HDP-bent took place by absorption into organic phases formed by their long hydrocarbon tails. The shale was found to be by far the most cost-effective sorbent, an important factor for large scale applications. Solids concentration effects (i.e., higher apparent sorption capacities at lower experimental sorbent concentrations) were exhibited by HDTMA-bent and HDP-bent. This can be attributed to aggregation of sorbent particles as a result of interactions among their hydrocarbon chains. Solids effects were observed to decline and eventually disappear as sorbent concentrations were increased. Such effects must be considered in applying batch sorption results to flow-through systems.  相似文献   

2.
Paper constitutes about 38% of municipal solid waste, much of which is disposed of in landfills. Sorption to such lignocellulosic materials may limit the bioavailability of organic contaminants in landfills. The objective of this study was to identify the effect of individual biopolymers in paper on toluene sorption and bioavailability by subjecting fresh and anaerobically degraded office paper and newsprint to enzymatic hydrolysis and acid hydrolysis. Enzymatic degradation of cellulose and hemicellulose had no effect on toluene bioavailability. In contrast, acid-insoluble lignin controlled toluene sorption and bioavailability for both fresh and degraded newsprint. Acid-insoluble lignin could explain only 54% of the toluene sorption capacity of degraded office paper however, suggesting that crude protein and/or lipophilic organic matter were also important sorbent phases. Toluene sorbed to degraded office paper was also less bioavailable than toluene sorbed to an equivalent mass of lignin extracted from this sorbent. The latter result suggests that a fraction of toluene sorbed to degraded office paper may have been sequestered by lipophilic organic matter. The sorption and bioavailability data indicate that the preferential decomposition of cellulose and hemicellulose relative to lignin in landfills should not decrease the overall toluene sorption capacity of paperwaste or increase the bioavailability of sorbed toluene.  相似文献   

3.
Simulated solar light irradiation of mesotrione in natural waters   总被引:3,自引:0,他引:3  
Photolysis is expected to be a major degradation process for pollutants in surface waters. We report here the first photodegradation study on mesotrione, a new triketone herbicide for use in maize. In a first step, we investigated the direct photolysis of mesotrione at 365 nm from a kinetic and analytical point of view. Mesotrione sensitizes its own oxidation through singlet oxygen formation and sensitizes the oxidation of H-donors through electron or H-atom transfer. In a second step, irradiation experiments were performed under conditions prevalent in the aqueous environment. Mesotrione in submicromolar concentrations was exposed to simulated sunlight, in addition to Suwannee River natural organic matter and/or nitrates. Suwannee River natural organic matter sensitizes the oxidation of mesotrione through the intermediacy of singlet oxygen, and the rate of mesotrione transformation is significantly enhanced for Suwannee River natural organic matter concentrations equal to or above 10 mg/L. Nitrates played a negligible role in SRNOM solutions.  相似文献   

4.
The mechanism of ionic liquid sorption onto selected natural soils differing in their organic content, cation exchange capacity, and particle size distribution was investigated in detail. Isotherms were employed to describe sorption. In most cases,the maximum achievable surface concentrations were well above CEC values. This observation may indicate that initially sorbed solutes modify the sorbent, a process favoring further sorption. The experimental data suggest that if a multilayer process occurs, such a mechanism will be applicable to all ionic liquids; but saturation of the second layer occurred only with the longest alkyl chain compound. The shorter alkyl chain cations did not reach saturation in the concentration range investigated here. The influence of the varying pH and ionic strength of an aquifer on sorption strength was also determined.  相似文献   

5.
A rhamnolipid biosurfactant mixture produced by P. aeruginosa UG2 and the surfactant Triton X-100 were tested for their effectiveness of enhancing the desorption of trifluralin, atrazine, and coumaphos from soils. Sorption of both surfactants by the soils was significant and adequately described by the Langmuir-type isotherm. Values of maximum sorption capacity (Qmax) and Langmuir constant (Klang) did not correlate with the amount of soil organic matter. Our results indicate that clay surfaces play an important role in the sorption of surfactants. When surfactant dosages were high enough to reach soil saturation and maintain an aqueous micellar phase, pesticide desorption was only enhanced. At dosages below soil saturation, surfactants sorbed onto soil, increasing its hydrophobicity and enhancing the sorption of the pesticides by a factor of 2. Similar values of water-soil partition coefficients (Ksol*) for aged and fresh added pesticides to soils indicate that the aging process used did not significantly after the capability of either surfactant to desorb the pesticides. A model able to estimate equilibrium distributions of organic compounds in soil-aqueous-micellar systems was tested against experimental results. The determined organic carbon partition coefficients, Koc values, indicate that, on a carbon normalized basis, sorbed Rh-mix is a much better sorbent of pesticides than TX-100 or soil organic matter. These results have significant implications on determining the effectiveness of surfactants to aid soil remediation technologies.  相似文献   

6.
Natural organic matter (NOM) hydration is found to change activity-based sorption of test organic compounds by as much as 2-3 orders of magnitude, depending on the compound and the specific NOM sorbent. This is demonstrated for sorption on humin, humic acid, and the NOM source material. Hydration assistance in organic compound sorption correlates with the ability of the sorbate to interact strongly with hydrated sorbents, demonstrating the important role of noncovalent polar links in organizing the sorbent structure. Differences in hydration effect between the sorbents are caused mainly by differences in compound-sorbent interactions in the dry state. For a given compound, hydration of the sorbent tends to equalize the sorption capability of the three sorbents. No correlation was found between the strength of sorbate-sorbent interactions or the type of sorbate functional groups and the extent of sorption nonlinearity. Sorption nonlinearity compared over the same sorbed concentration range is greater on the original NOM than on either of the two extracted fractions. In elucidating sorption mechanisms on hydrated NOM, it is important to explicitly consider the participation of water molecules in organic compound interactions in the NOM phase.  相似文献   

7.
利用香蒲绒纤维作吸油材料对含油废水中的机油进行处理,阐述了纤维的吸油机理。研究了该纤维对纯机油以及对含水机油的吸附能力,并研究了纤维的重复利用性能。结果表明,香蒲绒纤维对机油有很好的吸附能力,1g纤维能吸附13~20g的纯机油,能吸附含水机油12~18g;吸油后纤维通过挤压即可重复利用,且经过5次重复试验后1g香蒲绒纤维仍能吸附5~10g的含水机油。  相似文献   

8.
Extracellular polymeric substances (EPS) are an important source of organic matter in soil. Once released by microorganisms, a portion may be sorbed to mineral surfaces, thereby altering the mineral?s ability to immobilize heavy metals. EPS from Bacillus subtilis were reacted with Ca-saturated bentonite and ferrihydrite in 0.01 M KCl at pH 5.0 to follow the preferential uptake of EPS-C, -N, and -P. The sorption kinetics of Pb(2+), Cu(2+), and Zn(2+) to the resulting EPS-mineral composites was studied in single and binary metal batch experiments ([metal](total) = 50 μM, pH 5.0). Bentonite sorbed much more EPS-C (18.5 mg g(-1)) than ferrihydrite (7.9 mg g(-1)). During sorption, EPS were chemically and size fractionated with bentonite favoring the uptake of low-molecular weight components and EPS-N, and ferrihydrite selectively retaining high-molecular weight and P-rich components. Surface area and pore size measurements by N(2) gas adsorption at 77 K indicated that EPS altered the structure of mineral-EPS associations by inducing partial disaggregation of bentonite and aggregation of ferrihydrite. Whereas mineral-bound EPS increased the extent and rate of Pb(2+), Cu(2+), and Zn(2+) sorption for bentonite, either no effect or a decrease in metal uptake was observed for ferrihydrite. The extent of sorption always followed the order Pb(2+) > Cu(2+) > Zn(2+), which also prevailed in binary Pb(2+)/Cu(2+) systems. In consequence, sorption of EPS to different minerals may have contrasting consequences for the immobilization of heavy metals in natural environments by inducing mineral-specific alterations of the pore size distribution and, thus, of available sorption sites.  相似文献   

9.
Trichloroethene (TCE) is one of the most common pollutants in groundwater, and Cs+ can be a cocontaminant at nuclear facilities. Smectite clays have large surface areas, are common in soils, have high affinities for some organic contaminants, and hence can potentially influence the transport of organic pollutants entering soils and sediments. The exchangeable cations present near smectite clay surfaces can radically influence the sorption of organic pollutants by soil clays. This research was undertaken to determine the effect of Cs+, and other common interlayer cations, such as K+ and Ca2+, on the sorption of TCE by a reference smectite clay saponite. Cs-saturated clay sorbed the most TCE, up to 3500 mg/kg, while Ca-saturated smectite sorbed the least. We hypothesize that the stronger sorption of TCE by the Cs-smectite can be attributed to the lower hydration energy and hence smaller hydrated radius of Cs+, which expands the lateral clay surface domains available for sorption. Also, Cs-smectite interlayers are only one or two water layers thick, which may drive capillary condensation of TCE. Our results implicate enhanced retention of TCE in aquifer materials containing smectites accompanied by Cs+ cocontamination.  相似文献   

10.
The effects of ethanol- and methanol-water mixtures on Zn and Cd sorption onto bentonite and illite were investigated at low initial metal concentration (< or =10(-5) M) and low ionic strength (2.5 mM Ca(NO3)2). For all cosolvent fractions, the percent coverage of Zn and Cd to clay minerals was low (<5%) and independent of the solution dielectric constant, epsilon, except for Zn at 10 microM. Cadmium sorption to bentonite and illite was independent of epsilon. Zinc sorption varied significantly between clay types, cosolvent type, and cosolvent fraction. The partitioning of Zn to bentonite increased from 0 to 10% alcohol-water fraction and decreased after 10%. The same pattern was observed for the partitioning of Zn on illite in methanol-water mixtures. In ethanol-water mixtures, Kf for Zn on illite increased continuouslyfrom 0 to 50% ethanol. The decreased partitioning and hence mobility of Zn to bentonite and illite after 10% alcohol (only in methanol-water mixtures for illite) suggests a potential environmental threat resulting from increased transport of this metal in subsurface environments where these cosolvents are present.  相似文献   

11.
Iron humate (IH) was examined as a new low-cost sorbent for removing basic dyes (Methylene Blue, Methyl Violet, Crystal Violet, Malachite Green, and Rhodamine B) from waters. The sorption of the dyes from aqueous solutions was described by a multisite Langmuir isotherm; the sorption capacities ranging from ca. 0.01 to 0.09 mmol/g were calculated from the parameters of the isotherm for individual dyes. A more detailed study was carried out with Methylene Blue to examine an influence of the composition of aqueous phase on the sorption. pH and the presence of inorganic salts have only minor effects on the sorption. The presence of anionic surfactant (sodium dodecyl sulfate, SDS) increases dramatically the sorption of Methylene Blue. A model describing the sorption of basic (cationic) dyes in the presence of anionic surfactants was proposed; two main mechanisms are considered in this model: the sorption of cationic dyes onto the polar (or cation-exchange) active sites and the sorption of relatively small dye-surfactant aggregates onto the nonpolar part of the sorbent. Experimental dependencies comply well with those predicted from the model. Both in the presence as well as in the absence of SDS, the dye sorption proceeds relatively quickly--most of the dye is sorbed within the first several hours. Leachability of the dye from the loaded sorbent was found to be very low, especially with water as leachant.  相似文献   

12.
Natural Organic Matter (NOM) is a major sorbent for organic pollutants in soils and sediments. While sorption under oxic conditions has been well investigated, possible changes in the sorption capacity of a given NOM induced by reduction have not yet been studied. Reduction of quinones to hydroquinones, the major redox active moieties in NOM, increases the number of H-donor moieties and thus may affect sorption. This work compares the sorption of four nonionic organic pollutants of different polarities (naphthalene, acetophenone, quinoline, and 2-naphthol), and of the organocation paraquat to unreduced and electrochemically reduced Leonardite Humic Acid (LHA). The redox states of reduced and unreduced LHA in all sorption experiments were stable, as demonstrated by a spectrophotometric 2,6-dichlorophenol indophenol reduction assay. The sorption isotherms of the nonionic pollutants were highly linear, while paraquat sorption was strongly concentration dependent. LHA reduction did not result in significant changes in the sorption of all tested compounds, not even of the cationic paraquat at pH 7, 9, and 11. This work provides the first evidence that changes in NOM redox state do not largely affect organic pollutant sorption, suggesting that current sorption models are applicable both to unreduced and to reduced soil and sediment NOM.  相似文献   

13.
Interactions of organic contaminants with mineral-adsorbed surfactants   总被引:1,自引:0,他引:1  
Sorption of organic contaminants (phenol, p-nitrophenol, and naphthalene) to natural solids (soils and bentonite) with and without myristylpyridinium bromide (MPB) cationic surfactant was studied to provide novel insightto interactions of contaminants with the mineral-adsorbed surfactant. Contaminant sorption coefficients with mineral-adsorbed surfactants, Kss, show a strong dependence on surfactant loading in the solid. At low surfactant levels, the Kss values increased with increasing sorbed surfactant mass, reached a maximum, and then decreased with increasing surfactant loading. The Kss values for contaminants were always higher than respective partition coefficients with surfactant micelles (Kmc) and natural organic matter (Koc). At examined MPB concentrations in water the three organic contaminants showed little solubility enhancement by MPB. At low sorbed-surfactant levels, the resulting mineral-adsorbed surfactant via the cation-exchange process appears to form a thin organic film, which effectively "adsorbs" the contaminants, resulting in very high Kss values. At high surfactant levels, the sorbed surfactant on minerals appears to form a bulklike medium that behaves essentially as a partition phase (rather than an adsorptive surface), with the resulting Kss being significantly decreased and less dependent on the MPB loading. The results provide a reference to the use of surfactants for remediation of contaminated soils/sediments or groundwater in engineered surfactant-enhanced washing.  相似文献   

14.
A composite sorbent (GAC-QPVP) was prepared by coating poly(4-vinylpyridine) onto a granular activated carbon, followed by cross-linking and quaternization processes. The sorbent was characterized by scanning electron microscopy, point of zero charge measurement, and BET analysis. Batch experiments with variable pH, ionic strength, and concentrations of Cr(VI), sorbent, and competing anions were conducted to evaluate the selective sorption of Cr(VI) from aqueous solutions. The results showed that Cr(VI) sorption rates could be described by a reversible second-order kinetics, and equilibrium uptake of Cr(VI) increased with decreasing pH, decreasing ionic strength, and increasing sorbent concentration. The estimated maximum equilibrium uptake of chromium was 53.7 mg/g at pH = 2.25, 30.7 mg/g at pH = 3.65, and 18.9 mg/g at pH = 6.03, much higher than the maximum capacity of PVP-coated silica gel, an adsorbent for Cr examined previously. When compared with the untreated granular activated carbon, sorption onto GAC-QPVP resulted in much less Cr(VI) reduction and subsequent release of Cr(III). The effect of phosphate, sulfate, and nitrate was minor on the selective sorption of Cr(VI). An ion exchange model that was linked with aqueous speciation chemistry described Cr(VI) sorption reasonably well as a function of pH, ionic strength, and Cr(VI) concentration. Model simulations suggested that sorbed Cr(VI) was partially reduced to Cr(III) on the sorbent when pH was less than 4. The presence of Cr(III) on the sorbent was confirmed by the X-ray photoelectron spectroscopic analysis. Overall, the study has demonstrated that GAC-QPVP can effectively remove Cr(VI) from aqueous solutions under a wide range of experimental conditions, without significant Cr(III) release associated with the virgin GAC treatment.  相似文献   

15.
To probe the reactivity of 2,4,6-trimethylphenol with humic triplet excited states, we investigated its influence on the humic substances-mediated photooxygenation offurfuryl alcohol. Elliott soil humic and fulvic acids were employed for these experiments. When added in the concentration range of 10(-4) - 10(-3) M, 2,4,6-trimethylphenol inhibited furfuryl alcohol photooxygenation to an extent depending on its concentration. The inhibiting effect decreased as the oxygen concentration was increased. By postulating that 2,4,6-trimethylphenol competes with oxygen for reaction with humic triplet excited states and with furfuryl alcohol for reaction with singlet oxygen, we obtained kinetic laws describing the consumption profiles of furfuryl alcohol and 2,4,6-trimethylphenol. Experimental rates of 2,4,6-trimethylphenol and furfuryl alcohol loss could be satisfactorily fitted with 1.09-1.16 for the ratio k2/k3, where k2 and k3 are the reaction rate constants of humic triplet excited states with oxygen and 2,4,6-trimethylphenol, respectively. These types of experiments could be extended to a variety of substrates to measure their reaction rate constants with humic triplet excited states.  相似文献   

16.
Protection of mesopore-adsorbed organic matter from enzymatic degradation   总被引:3,自引:0,他引:3  
Synthetic mesoporous alumina and silica minerals with uniform pore geometries, and their nonporous analogues, were used to test the role of mineral mesopores (2-50 nm diameter) in protecting organic matter from enzymatic degradation in soils and sediments. Dihydroxyphenylalanine (L-DOPA), a model humic compound, was irreversibly sorbed to both mineral types. The surface area-normalized adsorption capacity was greater for the mesoporous minerals relative to their nonporous analogues. The degradation kinetics of free and mineral-sorbed L-DOPA by the enzyme laccase was monitored in a closed cell via oxygen electrode. Relative to freely dissolved L-DOPA, nonporous alumina-sorbed substrate was degraded, on average, 90% more slowly and to a lesser extent (93%), likely due to laccase adsorption to alumina. In contrast, relative to free L-DOPA, degradation of nonporous silica-sorbed L-DOPA was enhanced by 20% on average. In the case of mesoporous alumina and silica-sorbed L-DOPA, the enzyme activity was 3-40 times lower than that observed for externally sorbed substrate (i.e., L-DOPA sorbed to nonporous minerals). These results provide strong evidence to support the viability of the mesopore protection mechanism for sequestration and preservation of sedimentary organic matter and organic contaminants. Nanopore adsorption/desorption phenomena may aid in explaining the slow degradation of organic contaminants in certain soils and sediments and may have implications for environmental remediation and biotechnological applications.  相似文献   

17.
There is an increasing concern about the protection of groundwater from contamination by enteric viruses and the prevention of outbreaks of waterborne diseases. Knowledge of survivability and transport of viruses from their point of origin is necessary to determine their potential effects on the neighboring groundwater systems. The distribution of virus is, in turn, dependent on the physical and chemical compositions of the surrounding soil and subsurface systems. For the present study, we have determined the effects of different surfactants (cationic, anionic, nonionic, and biological) and natural organic matter (NOM) on bacteriophages. Results indicated that surfactants and NOM adversely affect phage survival in binary systems, with surfactants being the most harmful. Studies with ternary systems also showed that the presence of surfactants reduced sorption of phages on sorbents either by occupying available sorption sites on the sorbent material or by displacing the sorbed phages from the sorbent surface. Water contact angles of the selected phages and different sorbent surfaces have been measured. Experimental data demonstrated that the sorption of hydrophobic viruses was favored by hydrophobic sorbents, while the sorption of hydrophilic viruses was favored by hydrophilic sorbents.  相似文献   

18.
The often-observed enhanced sorption of hydrophobic organic chemicals (HOCs) to sediments is frequently attributed to the presence of soot and soot-like materials. However, sediments may contain other hydrophobic phases, such as weathered oil residues. Previous experiments have shown that these residues can be efficient sorbents for certain PAHs. In this study we investigated sorption of PCBs to sediments contaminated with different concentrations and types of oils, and from that derived oil-water distribution coefficients (Koil). Sorption of PCBs to both fresh and weathered oils was proportional to sorbate hydrophobicity, and no effects of PCB planarity were observed. Furthermore, the experiments demonstrated that different oils sorbed PCBs similarly and extensively (Koil up to 108.3 for PCB 169), and that weathering caused an almost 2-fold increase in sorption of the lower chlorinated PCBs. Koil values indicated that at the PCB equilibrium concentrations tested (pg-ng/L range), for many congeners weathered oil is a stronger sorbent than pure soot and soot-like materials. Due to attenuation of adsorption to the latter materials in sediments (caused by competitive adsorption with organic matter), sedimentary weathered oil will therefore, if present as a separate phase, defeat sedimentary soot, coal, and charcoal as PCB sorbent in most cases. Consequently, weathered oil probably is the ultimate sedimentary sorbent for PCBs and should be included in HOC fate models.  相似文献   

19.
Sulfonamides (SA), ionizable, polar antimicrobial compounds, may reach the environment in substantial amounts by the spreading of manure. The environmental behavior of SA is still difficult to predict. We investigated the influence of the main factors supposed to control SA sorption to organic materials: composition of sorbent, solute chemistry, and contact time. For that purpose, sulfathiazole (STA) sorption to compost, manure, and humic acid after 1 and 14 d was studied under sterile conditions. The experiments demonstrated that sorption was most strongly affected by contact time and pH. Irrespective of sorbent and pH, sorption continued substantially after the fast initial sorption within 1 d. For all sorbents and both contact times, STA sorption exhibited a pronounced pH dependence. Species-specific Koc values decreased in the order KoccatiOn> Kocneutral > Kocanion. Differences in sorbent composition influenced STA sorption weaker. Forthe neutral STA species, NMR chemical shift regions assignable to ketonic, carboxylic, and phenolic C as well as aromatic C-H and methoxyl/N-alkyl C seemed to control sorption. Forthe cations, sorption followed the cation exchange capacities of the sorbents. STA sorption to manure and humic acid increased with higher ionic strength (0.31 M compared to 0.06 M) at pH 7.5.  相似文献   

20.
A macroreticular resin adsorbent CHA-101 was aminated by dimethylamine, and a novel sorbent named M-101 was obtained. Several industrially important aromatic sulfonates including sodium benzenesulfonate (BS), sodium p-toluenesulfonate (TS), and sodium 2-naphthalenesulfonate (NS) were selected as general solutes to evaluate the performance of the newly synthesized resin particles. X-ray photoelectron spectroscope (XPS) analyses was used to determine the protonation degree of amino group at different solution pH, and the effect of pH on the sorption of these solutes onto M-101 can be explained by the ion exchange mechanism. The experimentally observed sequence of the sorption capacity of the tested organic sulfonates onto M-101 indicates that the pi-pi interaction between the solute molecule and the polymer matrix plays an important role in uptake of organic sulfonates from aqueous solution. Sodium sulfate was selected as a typical competitive inorganic anion, and improved selectivity of BS sorption over sulfate on M-101 was observed by comparison with a common macroporous weak base anion exchanger D-301. In addition, both sorption and desorption kinetics of M-101 were also found to be faster than that of D-301. Analyses of sorption isotherms and thermodynamics proved that BS sorption on M-101 was an exothermic and more selective process than on D-301. Both column tests and field applications proved M-101 to be an effective sorbent that can be used to remove aromatic sulfonates from aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号