首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article presents a numerical study of transport phenomena under impinging circular jet banks over a moving surface by solving three-dimensional Navier-Stokes equation in both the laminar and the turbulent regime. A periodic element of the jet bank was used with jet pitch of 10d, span of target surface as 10d, and jet height of 2d, where d is the jet diameter. For the turbulent closure, a realizable k-ε model was used. The distributions of the Nusselt number and the skin friction coefficients were computed from the analyzed data. The surface velocity was found to influence strongly the flow structure over the impinging surface, leading to reduction in heat transfer.  相似文献   

2.
A three dimensional computational fluid dynamic investigation is carried out to predict the turbulent flow and surface heat transfer under an impinging air jet issuing normally from a single noncircular orifice in a plate held parallel to the target surface. Static pressure distributions, velocity fields and local as well as average Nusselt number on the impinged surface are presented for square, elliptic, and rectangular orifices and compared with those for a circular orifice. Effects of jet Reynolds number as well as spacing between the nozzle plate and the impinged surface are examined using a two-layer κ-η turbulence model. Results show flow structure similarities between the characteristics of rectangular and elliptic jets of equal aspect ratio. Further, it is observed that noncircular impinging jets can provide higher average heat transfer rates than corresponding circular jets for certain geometric parameters viz. nozzle-to-plate spacing and the size of the averaging area used to compute the average Nusselt number.  相似文献   

3.
Impinging jets are commonly used in industrial dryers and electronics chip cooling. Since in industrial practice it is necessary to use multiple jets, the interaction between jets can have important effect on their heat transfer performance. Hence, the study of cross-flow caused by the spent flow of upstream jets is obviously significant. In this study, a computational fluid dynamics simulation was carried out of the flow and heat transfer characteristics for a single semi-confined turbulent slot jet of air impinging normally or obliquely into an imposed air cross-flow of the same or different temperature. The standard k-ε and the Reynolds stress models were used. Effects of the various flow parameter (e.g., jet-to-cross-flow mass ratio) and geometric parameters (e.g., nozzle-to-target spacing and jet angle) were evaluated at a fixed Reynolds number (11,000 and 12,000) for equal and unequal temperatures of the jet and cross-flow. Results indicate the significant degradation of the impingement heat transfer rates due to cross-flow and a relatively minor influence of the temperature difference between the jet and cross-flow over the ranges of parameters studied. Both the turbulence models produced comparable Nusselt number distributions along the impingement surface.  相似文献   

4.
刘曙光  钟文琪  陈曦 《化工学报》2021,72(9):4553-4563
构建了X光层析成像(XCT)气固流动参数测量系统,基于锥形束滤波反投影算法(FDK)开发了CT三维重建软件,并设计了射流识别及量化算法。基于以上方法获得了不同流化风速下床料粒径dp、布风板孔口直径d0和布风板孔口均分面积A0对射流形态结构和几何特征的影响规律。结果表明平均射流长度L、最大直径D和体积V与床料粒径dp成反比,与孔口直径d0和孔口均分面积A0成正比,最终拟合了流化床平均射流长度关联式。  相似文献   

5.
The aim of this study is computational fluid dynamic (CFD) simulation of the single-phase pressure drop in fixed and expanded beds. A fixed bed with a column to particle diameter ratio (D/dp) of 5 and having 151 particles arranged in 8 layers was taken as a computational geometrical model. In the case of expanded beds, 0.605 voidage bed consisted of 105 particles and 0.783 voidage bed consisted of 55 particles. Simulations were performed in the creeping, transition and turbulent flow regimes, where Reynolds number (dpVLρL/μL) was varied from 0.1 to 10,000. The deviations from Ergun's equation due to the wall effects, which are important in D/dp < 10 beds, were well explained by the CFD simulations. Thus, an increase in the pressure drop was observed due to the wall friction in the creeping flow, whereas, in turbulent regime a decrease in the pressure drop was observed due to the channeling near the wall. Energy balance has been established through the CFD predicted values of energy dissipation rates (viscous as well as turbulent).  相似文献   

6.
非等温液-液对置撞击面温度分布均匀性   总被引:1,自引:0,他引:1       下载免费PDF全文
赵朋飞  张小辉  张汉  冯鹏  徐佳瑞 《化工进展》2019,38(12):5297-5305
对不同条件下非等温过程液-液对置撞击后形成的气液混合撞击面的温度分布均匀性进行了研究。以温度不均匀系数和撞击面温度分布作为评价标准,利用Mixture模型数值模拟撞击过程,并基于平面激光诱导荧光(PLIF)技术进行可视化测量实验验证计算模型。通过对不同的喷嘴出口速度(v)、喷嘴对置间距(L)以及湍动能等条件下撞击面温度分布进行研究。结果表明,喷嘴直径和喷嘴对置间距一定时,增加喷嘴的出口流速,则温度不均匀系数整体呈下降趋势;喷嘴直径和喷嘴出口流速一定时,非等温液-液对置撞击后形成区域温度场分布随喷嘴间距的增加,其温度分布区间呈减小趋势。L=3D时,温度的分布区间最小,温度场分布最均匀。湍动能的分布曲线越平稳,液-液对置撞击后形成的气液混合撞击面的温度分布越均匀。  相似文献   

7.
Due to enhanced transport characteristics, impinging jets are widely used in industry to dry large surface area products such as paper and textiles. The present numerical study concerns the modelling of convective heat transfer for impingement drying. Flow and heat transfer under a confined two dimensional turbulent air jet impinging on a flat surface were modelled by solution of two-dimensional Navier-Stokes and energy equations. The turbulence model used was the high-Re number version of the well known two-equation (κ-ε) model and numerical solution was by the upwind finite difference scheme. The specific objective was to evaluate the accuracy of schemes for modelling the near-wall turbulent flow.

The mean flow properties such as centerline velocity decay and the pressure distribution at the impingement surface show no dependence on the near-wall model used. Heat transfer predictions were found to be quite sensitive to the choice of near-wall model. Best agreement between predictions and experiments was obtained for a Chieng-Launder type model with a new modification, use of kp instead of kv in the calculation of τw.  相似文献   

8.
张建伟  安丰元  董鑫  冯颖 《化工学报》2022,73(2):622-633
利用实验与数值模拟方法对动态阶跃型撞击流反应器流场特性进行研究,分析不同入口速度条件下流体流动规律、湍流特性以及能量水平。结果表明,动态阶跃型入口条件下,撞击面在两喷嘴之间周期性移动,流动参数也会发生周期性变化。随着入口平均速率的增大,驻点速度逐渐增大;随着两喷嘴入口速率差的增加,撞击面移动速度加快,撞击区流体湍流强度逐渐增加;随着入口平均速率与入口速率差的增大,XOZ平面在一个周期内的平均湍动能逐渐减小。对比动态撞击流反应器与稳态撞击流反应器内流场特性,探究动态入口条件对撞击流反应器流场特性的影响。结果表明,动态阶跃撞击流反应器湍流黏度、湍流强度和湍动能等参数均明显高于稳态撞击流反应器,撞击轴线上的湍动能梯度分布大于稳态撞击流反应器。动态入口条件下撞击流反应器流体湍动更剧烈,能量水平更高,有利于增加流场内流体扰动与促进混合。  相似文献   

9.
Microchannel reactors are widely used in different fields due to their intensive micromixing and, thus, high masstransfer efficiency. In this work, a single countercurrent-flow microchannel reactor(S-CFMCR) at the size of ~1 mm was developed by steel micro-capillary and laser drilling technology. Utilizing the Villermaux/Dushman parallel competing reaction, numerical and experimental studies were carried out to investigate the micromixing performance(expressed as the segregation index XS) of liquids inside S-CFMCR at the low flow velocity regime.The effects of various operating conditions and design parameters of S-CFMCR, e.g., inlet Reynolds number(Re),volumetric flow ratio(R), inlet diameter(d) and outlet length(L), on the quality of micromixing were studied qualitatively. It was found that the micromixing efficiency was enhanced with increasing Re, but weakened with the increase of R. Moreover, d and L also have a significant influence on micromixing. CFD results were in good agreement with experimental data. In addition, the visualization of velocity magnitude, turbulent kinetic energy and concentration distributions of various ions inside S-CFMCR was illustrated as well. Based on the incorporation model, the estimated minimum micromixing time tmof S-CFMCR is ~2 × 10~(-4)s.  相似文献   

10.
张建伟  董鑫  马红越  冯颖 《化工进展》2015,34(7):1832-1840
应用激光多普勒测速系统, 对双喷嘴水平对置撞击流混合器内的速度场进行测量, 并且分别采用湍流理论和混沌理论对所测得的瞬时速度场进行分析, 研究其瞬时速度场内湍流特性参数(速度脉动均方根、湍流强度和湍动能)以及混沌吸引子的特征参数(关联维、Kolmogorov熵和最大Lyapunov), 得出该参数随喷嘴间距变化和进口雷诺数变化的分布情况, 并且得到有利于提高混合器内微观混合效果的最优工况。通过混沌分析得到双喷嘴水平对置撞击流混合器的瞬时速度场具有混沌特征和分形特性。研究结果表明:流场内的湍流参数和混沌参数均与进口雷诺数呈正相关关系, 但是两参数却随着喷嘴间距的增加, 呈先增加后减小的变化趋势, 从而可以得到在实验考察范围内L=3d为最合适的喷嘴间距。  相似文献   

11.
Due to enhanced transport characteristics, impinging jets are widely used in industry to dry large surface area products such as paper and textiles. The present numerical study concerns the modelling of convective heat transfer for impingement drying. Flow and heat transfer under a confined two dimensional turbulent air jet impinging on a flat surface were modelled by solution of two-dimensional Navier-Stokes and energy equations. The turbulence model used was the high-Re number version of the well known two-equation (κ-?) model and numerical solution was by the upwind finite difference scheme. The specific objective was to evaluate the accuracy of schemes for modelling the near-wall turbulent flow.

The mean flow properties such as centerline velocity decay and the pressure distribution at the impingement surface show no dependence on the near-wall model used. Heat transfer predictions were found to be quite sensitive to the choice of near-wall model. Best agreement between predictions and experiments was obtained for a Chieng-Launder type model with a new modification, use of kp instead of kv in the calculation of τw.  相似文献   

12.
Confined impinging jet reactor(CIJR) is a typical process intensification device used in the chemical industry.In this study, two dimensional Particle Image Velocimetry(PIV) and Large Eddy Simulation(LES) method were used to investigate the flow field in a CIJR with jets of diameter 3 mm under highly turbulent condition.The results showed LES can predict the velocity and Turbulence Kinetic Energy(TKE) distributions in the reactor well by comparing with the PIV results.In the CIJR, the stagnation point fluctuates with the turbulence, and its instantaneous position accords with the normal distribution.Three methods, including s–t representation, Lumley–Newman triangle and A–G representation, were used to compare the turbulence anisotropy in the mixing chamber.It was found that the anisotropy in the impinging area and at the edge of impinging jet was strong and the maximum deviation was up to 40%.The results from 2 DPIV would lead to an overestimation of the turbulent kinetic energy as much as 20% to 30% than the results from the three dimensional numerical simulation.  相似文献   

13.
Marker nephelometry has been used to study the concentration fields of two jet-mixing systems: (i) equal opposed turbulent round free jets impinging upon each other, and (ii) the turbulent round free jet impinging upon a plane wall normal to its axis. Attention is focussed upon the impingement or deflection zone. The fields of mean concentration, concentration fluctuation intensity, and concentration intermittency were measured. Two-point correlations and frequency spectra were determined at selected points. Integral spatial scales were estimated. In the case of the opposed jets, the extent of mixing between the two jet source fluids was mapped. The results are of interest in relation to chemical reactors and combustors and for applications in heat and mass transfer.  相似文献   

14.
张建伟  高伟峰  冯颖  张一凡  董鑫 《化工进展》2021,40(11):5883-5893
撞击流技术具有良好的混合效果,广泛应用于能源、环保、化工等工程领域。由于撞击流反应器流场内存在大量无序的湍流涡结构,使其具有良好的混合效果。本文基于撞击流的混合原理,详细叙述了撞击流反应器内不同混合尺度下的混合过程以及涡的演变对混合的影响。结合实验和数值模拟等研究结果,阐述了不同类型撞击流反应器和撞击流反应器多相流场涡特性,归纳了撞击流反应器流场涡的特点。论述了撞击流反应器涡的产生和脱落机理。着重对圆柱射流、平板射流和撞击流流场内涡特性的本征正交分解(POD)分析进行总结,利用流场能量的角度揭示涡演化和消散规律。最后,对开发新型撞击流反应器、优化分析方法等研究前景进行展望。  相似文献   

15.
Local and average heat transfer coefficients were measured for a confined turbulent slot jet impinging on a permeable surface at which there may be throughflow. Local Nusselt number was obtained using a unique porous sensor designed for measurement of local heat transfer at a permeable surface which is subjected to rapidly and widely varying heat transfer. Measurements were performed for a wide range of jet Reynolds number and throughflow rates. Convective heat transfer coefficients was found to be enhanced by throughflow, and the enhancement factor in terms of Stanton number to be independent of jet Reynolds number and of extent of heat transfer area.  相似文献   

16.
Confined impinging jet reactor (CIJR) offers advantages for chemical rapid processes and has become an important new reactor used in the chemical industry. The micromixing efficiency in a T-shaped CIJR for two tubes of inner diameter of 3 mm was studied by using a parallel competing iodide–iodate reaction as the working system. In this work, the effects of different operating conditions, such as impinging velocity and acid concentration, on segregation index were investigated. In addition, the effects of the inner nozzles diameter and the distance L between the jet axis and the top wal of the mixing chamber on the micromixing efficiency were also considered. It is concluded that the best range of L in this CIJR is 6.5–12.5 mm. Based on the incorporation model, the estimated minimum micromixing time tm of CIJR approximately equals to 2 × 10?4 s. These experimental results indicate clearly that CIJR possesses a much better micromixing performance compared with the conventional stirred tank (micromixing time of 2 × 10?3 to 2 × 10?2 s). Hence, it can be envisioned that CIJR has more promising applications in various industrial processes.  相似文献   

17.
An experimental and numerical simulation study of heat transfer due to a confined impinging circular jet is presented. In this research, a stainless steel foil heated disk was used as the heat transfer surface of a simulated chip, and the thermocouples were mounted symmetrically along the diameter of the foil to measure the temperature distribution on the surface. Driven by a small pump, a circular air jet (1.5 mm and 1 mm in diameter) impinged on the heat‐transfer surface with middle and low Reynolds numbers. The parameters, such as Reynolds number and ratio of height‐to‐diameter, were changed to investigate the radial distribution of the Nusselt number and the characteristics of heat transfer in the stagnation region. Numerical computations were performed by using several different turbulence models. In wall bounded turbulent flows, near‐wall modeling is crucial. Therefore, the turbulence models enhanced wall treatment, such as the RNG κ‐? model, may be superior for modeling impingement flows. The numerical results showed reasonable agreement with the experimental data for local heat transfer coefficient distributions. The impinging jet may be an effective method to solve the cooling problem of high power density electronic packaging.  相似文献   

18.
A general dispersion formula is derived, which represents the dispersion energy between two bodies A and B by their macroscopic screened fluctuation fields. These fluctuation fields are calculated exactly in the case of half-spaces and spheres. In the case of half-spaces the Lifshitz dispersion formula is obtained. The dispersion energy between spheres is found to vary as 1/d for separations d small compared with the radii and to be proportional to 1/d6 for separations d large compared with the radii. The effect of layers adsorbed on the surfaces of the spheres on the dispersion energy is calculated. The dielectric properties of the adsorbed layers predominate over those of the bulk material for separations d smaller than the layer thickness.  相似文献   

19.
The surface local shear stress values were measured for a round submerged jet, with a fully developed turbulent velocity profile, impinging on a flat surface, using the electrochemical limiting current technique with the electrolyte consisting of potassium ferri- and ferrocyanide supported by aqueous sodium hydroxide. Experimental parameters were in the Reynolds number range 9200–73500, and inthe nozzle-to-plate distance range 2–10. The measurements of local shear stress values on the impingement surface in the radial direction were taken, and the effect of the experimental parameters on the behaviour of the shear stress values was discussed.  相似文献   

20.
An aerosol size spectrometer based on a round-jet impactor of continuously variable geometry is tested using an iris diaphragm as the nozzle. The impactor is run by fixing the nozzle-to-plate distance L, the aerosol mass flow rate m′, and the volumetric pumping capacity Q, which results in a nearly fixed downstream pressure at variable nozzle diameter dn. Tests are carried below 1.3 and 2.5 mm. The size spectrometer has an excellent resolution when the jet Reynolds number and nozzle-to-plate distance are kept within the ranges 175 Re 700; 0.75 L/dn 3.33. The instrument may also be run at atmospheric pressure, with an estimated lower size range of 1.7 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号