共查询到20条相似文献,搜索用时 15 毫秒
1.
The isotherms and kinetics of adsorption of lead(II) and copper(II) onto a grafted silica are studied at 20 degrees C. A commercial silica is grafted with an ethylediamine derivative, N-[3-(trimethoxysilyl)propyl]-ethylenediamine. From the Langmuir isotherms, maximum adsorption capacities of the grafted silica towards Pb(II) and Cu(II) are determined (0.184 mmol Pb(II)g-1 and 0.261 mmol Cu(II)g-1) and compared to those of non-modified silica (respectively, 0.019 and 0.036 mmol g-1). Four kinetic models, i.e., pseudo-first order, pseudo-second order, Langmuir and double-exponential are applied to fit the experimental kinetic data. The kinetic parameters are determined which allow to calculate the theoretical metal uptake as a function of time. The results are discussed and indicate the best fit is obtained with the double-exponential model. A discussion on the adsorption mechanism with respect to the double-exponential model leads to two possible interpretations: the metal uptake may follow a diffusion-controlled mechanism or a two-site adsorption process. 相似文献
2.
Adsorption of 2,4,6-trichlorophenol by multi-walled carbon nanotubes as affected by Cu(II) 总被引:1,自引:0,他引:1
Guang-Cai Chen Xiao-Quan Shan Yu-Sheng Wang Zhi-Guo Pei Tao Liu 《Water research》2009,43(9):2409-1379
Adsorption equilibrium of 2,4,6-trichlorophenol (TCP) on multi-walled carbon nanotubes (MWCNTs) was investigated to explore the possibility of using MWCNTs for concentration, detection and removal of TCP from contaminated water. The adsorption of TCP on MWCNTs at pH 4 was nonlinear, reversible and best fit by a Polanyi-Manes model. Oxidation treatment increased surface area and introduced hydrophilic carboxylic groups to the defect sites of MWCNTs, hence increased the sorption of TCP and Cu(II) individually. Cu(II) suppressed the sorption of TCP on oxidized MWCNTs15A, but had little effect on as-grown MWCNTs15. TCP had no influence on Cu(II) sorption to either. The mechanisms of Cu(II) suppression effect on TCP adsorption are ascribed to the formation of surface complexes of Cu(II), which was verified by X-ray absorption spectroscopy. Cu(II) exerts a cross-linking effect of functional groups on adjacent tubes, creating a more tightly knit bundle and suppressing the condensation of TCP in the pore spaces between the tubes. The large hydration sphere around surface complexes of Cu(II) may also intrude or shield hydrophilic sites, leading to the “crowding out” of TCP around the Cu(II)-complexed sites. 相似文献
3.
Sorption processes involving secondary iron minerals may significantly contribute to immobilisation of metals in soils and surface waters. In the present work the effect of dissolved organic matter (DOM) from a concentrated bog-water on the adsorption of Cu(II) onto schwertmannite (Fe8O8(OH)6SO4) and goethite (α-FeOOH) has been studied. The acid/base behaviour of DOM up to pH 6 was explained by assuming a diprotic acid with a density of carboxylate groups of 6.90 μeq (mg C)−1. The resulting acidity constants, recalculated to zero ionic strength were and .The uptake of DOM to schwertmannite and goethite was highest at low pH although adsorption was significant also under mildly alkaline conditions. Adsorption to the two minerals was similar although at high pH more DOM was adsorbed to schwertmannite than to goethite.DOM enhanced the adsorption of Cu(II) at moderately low pH in the goethite system but there was no effect of DOM in the case of schwertmannite. The presence of Cu(II) resulted in a decreased adsorption of DOM to goethite at weakly acidic pH and increased adsorption at high pH. In the case of schwertmannite, Cu(II) did not affect DOM uptake. 相似文献
4.
Adsorption and desorption characteristics of mercury(II) ions using aminated chitosan bead 总被引:1,自引:0,他引:1
Adsorption and desorption characteristics for mercury ions using aminated chitosan bead which showed very high affinity to mercury ions were studied. The adsorption of mercury ions using aminated chitosan bead was an exothermic process since binding strength each other increased as the temperature decreased. And the adsorption of mercury ions was almost completed in 100 min at 150 rpm. In case that adsorbent dose increased, mercury uptake capacity decreased, while, removal efficiency increased. The beads were not greatly affected by the ionic strength, organic material and alkaline-earth metal ions. Mercury ions adsorbed on aminated chitosan bead were desorbed effectively about 95% by EDTA and the adsorption capacity of the recycled beads can still be maintained at 90% level at the 5th cycle. 相似文献
5.
This study describes the preparation of two new chelating materials, MMSCB 3 and 5, derived from succinylated twice-mercerized sugarcane bagasse (MMSCB 1). MMSCB 3 and 5 were synthesized from MMSCB 1 using two different methods as described by Gurgel and Gil (2009). In the first method MMSCB 1 was activated with 1,3-diisopropylcarbodiimide and in the second with acetic anhydride (to form an internal anhydride) and later both were reacted with triethylenetetramine in order to obtain MMSCB 3 and 5. New obtained materials were characterized by mass percent gain, concentration of amine groups, FTIR, and elemental analysis. MMSCB 3 and 5 showed mass percent gain of 19.9 and 57.1%, concentration of amine groups of 2.0 and 2.1 mmol/g, and nitrogen content of 5.8 and 4.4%. The capacity of MMSCB 3 and 5 to adsorb Cu2+, Cd2+, and Pb2+ from aqueous single metal ion solutions was evaluated at different contact times, pHs, and initial metal ion concentrations. Adsorption isotherms were well fitted by Langmuir model. Maximum adsorption capacities of MMSCB 3 and 5 for Cu2+, Cd2+, and Pb2+ were found to be 59.5 and 69.4, 86.2 and 106.4, 158.7 and 222.2 mg/g, respectively. 相似文献
6.
Khaoula Benzaoui Abdelmalek Belatoui 《The International journal of environmental studies》2018,75(4):623-641
The paper reports a study of the performance of Maghnia bentonite in a purified and modified state for the removal of Cu(II) from industrial liquid waste in the region of Oran (North West Algeria). Bentonite was firstly treated to produce a Na-bentonite, then modified with an aluminum solution containing molar ratio OH/Al of 1.8 and finally calcined at 450 °C. The polymer [AlO4Al12(OH)24(H2O)12]7+ formed in solution was adsorbed by surface complexation on the bentonite, which is known to have a high capacity to fix metal cations. The prepared materials were characterized by DRX, BET and EDX. In order to find the optimum conditions, a full factorial design of 24 allowed us to determine the main effects and interactions of the factors studied: pH, mass of materials, contact time and temperature. The results obtained show that the best rate of adsorption of copper requires a pH = 10, a mass = 0.8 g, a stirring time = 80 min, and a temperature = 25 °C. The adsorption capacity of treated bentonite increased considerably from 4.147 mg/g for Na-bentonite to 7.173 mg/g for pillared aluminum bentonite. This shows the strong adsorption of copper compared with Na-bentonite, caused by its high surface area. 相似文献
7.
The objective of this work is to develop a surface-modified biosorbent with enhanced sorption capacity for heavy metal ions. The biomass of Penicillium chrysogenum was modified with polyethylenimine (PEI) and then crosslinked with glutaraldehyde. The crosslinked PEI was chemically bonded on the biomass surface through the amine and carboxylate groups on the pristine biomass. The presence of the amine group was confirmed by X-ray photon spectroscopy (XPS) and Fourier transform infrared (FTIR) analysis, and the concentration of the amine groups on the biomass surface was found to be 2 mmol/g through potentiometric titration. The rugged morphology of the biomass surface after the modification was observed by scanning electron microscope (SEM). Compared with the pristine biomass, the modified biomass with amine groups showed a significant increase in sorption capacity for three metal ions, namely, copper, lead and nickel. The sorption isotherms of the biomass for three metals were well described by Langmuir equation, with a maximum sorption at 92 mg copper, 204 mg lead and 55 mg nickel per g biomass. The binding sites for the three metals attributed to the amine groups on the biomass surface were verified by FTIR analysis. 相似文献
8.
Coal fly ash, an industrial solid waste, was found to have a good adsorption capacity for mercury(II). Adsorption of mercury(II) on coal fly ash conforms to Freundlich's adsorption model. Several parameters such as time of equilibration, effect of pH, effect of initial concentration of solute, effect of fly ash dose etc. were studied. The maximum adsorption was observed after shaking for 3 h. Solution pH was the most important parameter affecting the adsorption. The optimum pH range was 3.5–4.5. There was total adsorption of mercury below 10 mg l−1. The performance of coal fly ash as an adsorbent was found to be significant when compared with activated powdered charcoal. 相似文献
9.
Y. C. Sharma G. Prasad D. I. Rupainwar 《The International journal of environmental studies》2013,70(4):315-320
The adsorption of Cd(II) onto wollastonite has been reported. Adsorption increased from 55.7 to 93.6% by decreasing the concentration of Cd(II) from 2.0 x 10‐4M to 0.5 x 10‐4M. The rearranged Lagergren equation has been used for dynamic modelling of the process. However, the value of rate constant at 30°C was found to be 3.17 x 10‐2min‐1. Equilibrium modelling was carried out using the Freundlich isotherm equation and constants have been calculated. Thermodynamic studies were carried out and values of standard free energy (?G°), enthalpy (?H°) and entropy (AS°) were calculated at various temperatures. Low temperatures favour the uptake of Cd(II) in the process. 相似文献
10.
The chemical reaction between hydrous CdS(s) and Cu(II) and Hg(II) were studied by electrophoretic mobility measurements and adsorption experiments. The results show that cation exchange, following readsorption of the released Cd(II) ions onto the freshly-formed CuS(s) and cadmium hydroxide precipitation reactions occur when CdS particles come into contact with these metal ions which have sulfide precipitates less soluble than CdS(s). The effect of organic ligands on the ion exchange reaction, exemplified by EDTA (a strong complexing ligand) and phthalic acid (a weak complexing ligand), was also investigated. Both organic compounds have little effect on the lattice ion exchange reaction unless a large amount of strong complexing agent is present in the system. The dissolution of CdS(s), however, is slightly hindered in the presence of weak complex former such as phthalic acid and greatly enhanced in the presence of strong complex former such EDTA. 相似文献
11.
Multi-component adsorption of Ag(I), Cd(II) and Cu(II) by natural carbonaceous materials 总被引:1,自引:0,他引:1
Adsorption of silver, cadmium and copper from aqueous solutions by natural carbonaceous materials was investigated. The studied series of natural materials (spruce wood, pine bark, cork, peat, fusinite, lignite, oxidised lignite, bituminous coal and anthracite) was extended to include industrial carbon-rich materials: coke, activated carbon F-400 and Multisorb 100. Adsorption was tested on a single-component system and on the binary and ternary mixtures. All the materials used differ in their ability to adsorb selected metals. The adsorption of metals is significantly affected by the presence of other ions in solution. Total metal uptake was considerably higher in a mixture than single-ion adsorption. Chemical reactions, such as precipitation and reduction of metallic silver, play a role in metal uptake by bituminous coal, coke and activated carbon. 相似文献
12.
Removal of Cu(II) and Cd(II) from aqueous solution by seafood processing waste sludge 总被引:6,自引:0,他引:6
Dried waste slurry generated in seafood processing factories has been shown to be an effective adsorbent for the removal of heavy metals from dilute solutions. Characterization of the sludge surface with scanning electron microscope and X-ray microanalyzer were carried out to evaluate the components on the sludge surface that are related to the adsorption of metal ions. Aluminum and calcium, as well as organic carbon are distributed on the surface of sludge. Alkalimetric titration was used to characterize the surface acidity of the sludge sample. The surface acidity constants, pKa1s and pKa2s, were 5.80 and 9.55, respectively. Batch as well as dynamic adsorption studies were conducted with 10(-5) to 5 x 10(-3) M Cu(II) and Cd(II). A surface complexation model with the diffuse layer model successfully predicted Cu(II) and Cd(II) removals in single metal solutions. Predictions of sorption in binary-adsorbate systems based on single-adsorbate data fits represented competitive sorption data reasonably well over a wide range of conditions. The breakthrough capacity found from column studies was different for each metal ion and the data reflect the order of metal affinity for the adsorbent material very well. 相似文献
13.
Sorption of copper on kaolinite in the absence and presence of four fulvic acid (FA) fractions fractionated using XAD-8 resin, including F4.8, F7.0, F11.0 and Feth fractions (eluted by pH4.8 buffer, pH7.0 buffer, pH11.0 buffer, and ethanol (95%), respectively, was investigated by batch experiments. Results showed that the binding of Cu(II) by pure kaolinite increased with an increase in pH values. The presence of each FA fraction significantly affects the sorption of Cu(II) to kaolinite. Below pH 6.3, Cu(II) sorption was pronouncedly promoted after adding FA fraction to binary systems, compared to that in pure kaolinite suspensions. Magnitude in enhancement of Cu(II) sorption to solid phase, which was caused by FA fractions, followed an order of F4.8>F7.0>11.0>Feth. Above pH 6.3, nearly all the Cu(II) were removed from solution in pure koalinte system, while a portion of Cu(II) left in aqueous phase via formation of dissolved Cu-FA complexes, was observed in systems in the presence of FA fractions. The largest Cu(II) distribution coefficients (K(d)) between solid phase and aqueous solution at pH 3.15-5.7, are obtained from the ternary system with F4.8 fraction. The smallest K(d) are from system in the presence of Feth fraction. Conversely, over a pH range from 5.7 to 7.0, the highest K(d) values are from system with Feth fraction. Overall, F4.8 fraction exhibited the greatest effect on Cu(II) pH-dependent sorption to kaolinite, and Feth fraction had the least. Functional groups such as carboxyl, phenolic moieties of FA played the vital role in Cu(II) sorption to kaolinite at lower pH conditions, and solubility under neutral conditions. 相似文献
14.
The decomposition of monochloramine, which is commonly used as a secondary disinfectant at water treatment plants to reduce the formation of disinfection byproducts, always occurs in water and can be accelerated by certain catalytic substances. This work was to investigate the mechanism of monochloramine decomposition catalyzed by Cu(II) in aqueous solution. Ultraviolet (UV) spectral results showed that either Cu(II) addition or pH decrease would significantly promote the transformation of monochloramine to dichloramine. A copper intermediate, Cu(I), was extracted from the NH2Cl-Cu(II) solution by solid-phase extraction and identified by X-ray photoelectron spectroscopy (XPS). Electron spin resonance (ESR) results showed that hydroxyl radical (·OH) and amidogen radical (·NH2) were generated in the reaction between monochloramine and Cu(II). These radical intermediates also contributed to monochloramine decomposition. Based on the experimental results, the reaction mechanism for Cu(II)-catalyzed monochloramine decomposition was proposed which consisted of two pathways: 1) direct catalysis in which Cu(II) acts as a Lewis acid to accelerate monochloramine decomposition to dichloramine (major pathway); and 2) indirect catalysis in which the active radical intermediates (·OH and ·NH2) react with monochloramine and lead to its decomposition (minor pathway). 相似文献
15.
In this study, the fabrication, performance characteristics and application of a Cu(II) ion selective pyridine based thorium(IV) phosphate membrane electrode are studied. The membrane electrode exhibited a fast response time of 10 s, the wide linear response in the concentration of 1 × 10–1 to 1 × 10–7 M of Cu (II) ions with a slope of 27.60 mV/decade change in concentration and a lifetime of 4 months. The potentiometric response revealed that the potentials are independent of pH in the wide range of 3.0–6.5. It was also used as an indicator electrode in the potentiometric titration of Cu(II) ions using ethylenediamine tetraacetic acid, disodium salt. 相似文献
16.
The interactions of Cu(II) with algal surfaces and exudates were studied in metal-NTA buffers by a combination of several analytical techniques. Suspensions of living algae in the presence of NTA were titrated at constant pH with Cu(II). The various Cu species were determined as follows: a copper ion selective electrode was used reliably in the pCu range 9–12; differential pulse polarography was used to measure separately Cu(II)-NTA complexes and labile Cu(II) species and to evaluate the complexation of copper by ligands in solution; copper bound to the algal surfaces was extracted by acid treatment and measured by AAS. Thus, we determined both the binding of Cu to the algal surfaces and to exudates excreted by the algae. The results were interpreted in terms of conditional equilibrium constants valid at a given pH; the conditional constants, both for the binding to the surfaces and with the exudates increase in the pH range 5.0–6.5. Simple equilibrium models using the experimentally determined binding capacities and equilibrium constants were able to simulate the results and to evaluate the speciation of copper. Under the experimental conditions used, the binding of Cu(II) to algal exudates has a more significant effect on copper speciation than the binding to the algal surfaces. These extracellular ligands may play an important role in decreasing the concentration of free copper ion and thus mitigating the potential toxic effects in organisms. 相似文献
17.
The removal of Cu(II) by a mesoporous material, FSM-16, was studied using electron paramagnetic resonance (EPR) spectroscopy and surface complexation modeling (SCM). Free copper ions, adsorbed and precipitated Cu(II) species were qualitatively identified by in situ EPR spectroscopy of Cu-FSM-16 suspensions at room temperature and at 77 K. In addition, the adsorbed species was identified as a Cu(II) species with an axial symmetry from an analysis of the EPR spectra of "dry" Cu-FSM-16 at 77 K. On the basis of the EPR results, the removal of Cu(II) as a function of pH under various experimental conditions was successfully simulated by assuming two removal mechanisms such as surface complexation and surface precipitation. In the acidic pH range (< pH 6), free copper ions were predominant, and surface complexed then surface precipitated species became dominant as the pH increased. 相似文献
18.
Cement is the most adaptable binder currently available for the immobilization of heavy metals. C3S, tricalcium silicate, is one of the main phases in OPC and many of its properties were related to C3S. In the present work the stabilization of Cu (II) wastes by C3S during its early hydration (from 3 h – 7 days) was studied. Copper ions here either doped inside C3S during its preparation or present in the water of hydration. Levels of Cu (II) used were 1 and 3 wt.% of C3S. The chemically combined water and free Ca(OH)2 contents were determined after 3, 6 h and 1, 3 and 7 days of hydration. X-ray diffraction examination was performed for some selected samples. The results showed that the presence of Cu (II) ions retard the early hydration of C3S. This is due to the precipitation of the less soluble Cu(OH)2 which retards the precipitation of Ca(OH)2 as a result of the reduction in pH. Immobilization percentage of Cu (II) ions inside the C3S hydrated matrix was examined by the determination of the leached copper by using atomic absorption spectroscopy. Most of the investigated samples showed high degree of immobilization of Cu (II) ions and the doped mixes showed better immobilization results than mixes hydrated in water containing wastes. The rate of leached Cu (II) ions from the matrix of hydrated C3S was investigated by the application of diffusion equation derived for a plane source model. 相似文献
19.
Adsorption of IPC, CIPC, Linuron, Neburon and Vitavax on bentonite clays (H-, Fe- and Ca-forms) was investigated. Adsorption was found to conform with Freundlich's equation and to depend on the nature of saturating cation as well as the chemical structure of phenylamides. Considerable amounts of bentonite are needed to bring about effective removal of these pesticides from polluted water. The role of suspended clay minerals in the decontamination of surface waters will be rather limited. 相似文献
20.