首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
提出了一种半导体制冷器件晶粒相邻面同时准共焦成像检测的光学装置。选择晶粒天面成像光路中直角反射转像棱镜到玻璃载物转盘之间的距离调节来实现双面准共焦成像。设计了晶粒相邻面缺陷同时准共焦成像检测的光学系统,完成了晶粒相邻面缺陷同时准共焦成像检测的实验验证。结果表明,该检测装置可以实现晶粒相邻面缺陷同时成像检测的功能,满足晶粒相邻面缺陷成像检测的性能要求。具有提高检测速度、简化结构且提高系统可靠性等优点,可在晶粒缺陷智能检测筛选系统中获得应用。  相似文献   

2.
Specialized scanning ion-conductance microscope for imaging of living cells   总被引:3,自引:0,他引:3  
A specialized scanning ion conductance microscope (SICM) for imaging living cells has been developed from a conventional patch-clamp apparatus, which uses a glass micropipette as the sensitive probe. In contrast with other types of scanning probe microscope, the SICM probe has significant advantages for imaging living cells: it is most suitable for imaging samples immersed in water solutions; and since the probe senses ion current and does not need physical contact with the sample during the scan, any preliminary preparation of cells (fixation or adherence to a substrate) is unnecessary. We have successfully imaged murine melanocytes in growth medium. The microscope images the highly convoluted surface structures without damaging or deforming them, and reveals the true, three-dimensional relief of the cells. This instrument has considerable ability to operate, potentially simultaneously, in applications as diverse as real-time microscopy, electrophysiology, micromanipulation and drug delivery.  相似文献   

3.
The Golgi apparatus response to pathological disorders is predominantly as an intermediary component of membrane biogenesis where it is involved in processing, sorting and secretion of materials via secretory granules, and in the formation of lysosomes. A common initial response of the Golgi apparatus to any stress is an alteration or cessation of secretory activity. In the transformed cell, the Golgi apparatus is altered both morphologically and biochemically, suggesting a shift from a secretory to a membrane-generating mode of functioning. However, since fewer or less well-developed Golgi apparatus are frequently found in transformed cells, analytical methods of membrane isolation developed for normal tissues may not always yield equivalent results when applied to tumors. Cell surface alterations characteristic of malignant cells may result from modifications occurring at the level of the Golgi apparatus. Some lysosomal dysfunctions may result from underglycosylation of acid hydrolases by the Golgi apparatus. The use of cell-free systems between endoplasmic reticulum and Golgi apparatus or within Golgi apparatus cisterane is providing a new approach to the elucidation of the role of the Golgi apparatus in normal as well as pathological states.  相似文献   

4.
A new method of photoacoustic (PA) imaging based on an acoustic lens and the peak-hold technology is presented in this article. A fast PA imaging system, which consists of an acoustic lens, a 64-element linear transducer array, and a peak detection-and-hold circuit, is developed to obtain the two dimensional (2D) PA images of the experimental samples. By utilizing an acoustic lens, the PA signals generated from the sample are directly imaged on the imaging plane and collected by the 64-element linear transducer array which changes the PA signals into the corresponding electronic signals. Then the electronic signals are converted into a one dimensional image using the peak detection-and-hold circuit. After vertical scanning with a step motor on the imaging plane, the 2D PA image of the sample is achieved successfully. The results show that the images reconstructed in this experiment agree well with the original samples. Compared to other methods, this PA imaging system can acquire the PA images more rapidly without any complex algorithms, and it may provide a more convenient method for future in vivo noninvasive imaging of tissues and clinic diagnosis.  相似文献   

5.
Until recently high resolution TEM was the only imaging mode capable of probing the atomic lattice structure of crystals composing tooth enamel. Studies designed to determine the polyhedral shape of normal enamel crystals and initiation of carious lesions in enamel crystals were hampered and limited by interpretation of two-dimensional TEM images from thin section and freeze fracture replica specimens lacking depth of field. The newly developed SE-I signal mode for SEM (SE-I/SE-II ratio) can produce images of enamel crystals approaching beam diameter dimensions (0.7–2.0 nm), rivaling the resolution of the TEM technique and generating topographic contrasts for three dimensional imaging at very high magnification (≈?1,000,000 X). Ultrathin chromium (Cr) films generate enriched high resolution SE-I contrasts of enamel crystal surfaces and when imaged using an immersion lens field emission SEM operated at high voltage (20–30 KeV) produce unsurpassed topographic contrasts. Since the grain size of Cr is below the resolution of any SEM and is ultrathin (≈?1 nm), then SE-I images can provide a more accurate representation of enamel crystal structure than TEM methodologies. Our SE-I SEM observations of normal human enamel crystals reveal fractured spicules which contain angled flat surfaces delineated by a prominent 2 nm wide SE-I edge brightness contrast. Although microscopic observations often show crystals which are hexagonal in cross-section, in both SEM and TEM many other growth habits, including rectangular or irregular crystals (30–40 nm in width) which contain “notches,” are also observed. More detailed morphological studies are therefore required to determine the most likely habit planes and their relevance to the function of the enamel crystals. The granular appearing fine structural contrast imposed onto <100> lattice planes of sectioned enamel in TEM micrographs is also resolved with topographic contrasts in SE-I micrographs. These granules probably represent one or both of the enamel protein classes.  相似文献   

6.
Emission microscopes and related instruments comprise a specialized class of electron microscopes that have in common an acceleration field in combination with the first stage of imaging (i.e., an immersion objective lens, also called a cathode lens or emission lens). These imaging techniques include photoelectron emission microscopy (PEEM or PEM), electron emission induced by heat, ions, or neutral particles, mirror electron microscopy (MEM), and low-energy electron microscopy (LEEM), among others. In these instruments the specimen is placed on a flat cathode or is the cathode itself. The low-energy electrons that are emitted, reflected, or backscattered from the specimen are first accelerated and then imaged by means of an electron lens system resembling that of a transmission electron microscope. The image is formed in a parallel mode in all of the above instruments, in contrast to the image in scanning electron microscopes, where the information is collected sequentially by scanning the specimen. A brief history and introduction to emission microscopy, MEM, and LEEM is presented as a background for the Proceedings of the Second International Symposium and Workshop on this subject, held in Seattle, Washington, August 16-17, 1990. Current trends in this field gleaned from the presentations at that meeting are discussed.  相似文献   

7.
An electronic device manipulates the primary beam in the conventional transmission microscope to produce a hollow cone of illumination with its apex located at the specimen. The device uses the existing tilt coils of the microscope, and modulates the D.C. signals to both x and y tilt directions simultaneously with various waveforms to produce Lissajous figures in the back-focal plane of the objective lens. Electron diffraction patterns can be recorded which reflect the manner in which the direct beam is tilted during exposure of a micrograph. In the bright-field imaging mode the device provides a microscope transfer function without zeros in all spatial directions and has been used to obtain high resolution images which are also free from the effect of chromatic aberration. A standard second condenser aperture is employed and the width of the cone annulus is readily controlled by defocusing the second condenser lens. The cone azimuthal angle is also controlled electronically; hence the device can also be used in the dark-field imaging mode. This device has been applied to imaging both amorphous and crystalline materials including biomolecular specimens.  相似文献   

8.
后组调焦高清变焦镜头适用于前端口径较小、近距离成像要求较高及光路需要偏折的场合。近摄时,后组调焦方式获得的成像质量比用前组调焦方法更好,焦距小于50mm时,近摄距可达0.35m,不需要加近摄镜(前组调焦要加近摄镜),可以兼顾远近距离的高清成像要求。由于后组调焦高清变焦镜头物距与后截距的关系不是线性关系,调焦组的移动在不同焦距段的不同物距时对应不同的特征曲线,差异较大。为使调焦灵敏度处在一个合理区间,后组调焦位移不能采用通常使用的线性关系,需设计一条能覆盖这些特征曲线的非线性凸轮,因而根据其原理与结构进行了分析与设计。  相似文献   

9.
基于GRIN镜头的小型OCT探头的数值分析   总被引:1,自引:0,他引:1  
利用光学软件GLAD的数值仿真技术设计了用于光学相干层析技术成像的基于梯度折射率(GRIN)镜头的小型化探头.首先,简述了梯度折射率镜头的基本特性,讨论了基于梯度折射率镜头的光学探头的设计方法;然后,对由单模光纤、玻璃棒隔片和梯度折射率镜头构成的探头模型进行了仿真.结果显示,利用GLAD的数值仿真技术为小型化探头的设计...  相似文献   

10.
We describe an experimental approach to image the three-dimensional (3D) momentum distribution of the negative ions arising from dissociative electron attachment (DEA). The experimental apparatus employs a low energy pulsed electron gun, an effusive gas source and a 4π solid-angle ion momentum imaging spectrometer consisting of a pulsed ion extraction field, an electrostatic lens, and a time- and position-sensitive detector. The time-of-flight and impact position of each negative ion are measured event by event in order to image the full 3D ion momentum sphere. The system performance is tested by measuring the anion momentum distributions from two DEA resonances, namely H(-) from H(2)O(-) ((2)B(1)) and O(-) from O(2)(-) ((2)Π(u)). The results are compared with existing experimental and theoretical data.  相似文献   

11.
A new method was developed for convergent beam electron diffraction (CBED) and large angle convergent beam electron diffraction (LACBED) in the JEM-100CXII. This method is obtained in the imaging mode using the defocus objective lens and by re-setting condenser-2. A multi-dark field CBED pattern was achieved in two ways.  相似文献   

12.
为了实现高清数字化医疗内窥成像,使用成像质量良好的耦合透镜系统耦合内窥镜目镜和CCD相机,成为高清视频内窥镜。基于实际应用的要求,设计了一个适用于耳鼻喉科内窥镜耦合CCD相机的透镜系统,该系统可以用于1/1.8in(1in=25.4mm)、200万像素的CCD相机成像,并且具有12°视场角,4.4的F数。在调制传递函数(MTF)大于0.1判据下,透镜系统各视场的分辨率都在111lp/mm以上,在全视场范围都能取得很好的成像效果。实际测试表明,该系统光学成像清楚,图像细节表现明显,分辨率达到了高清成像的要求,虽然结构简单,但达到了预期的设计目标,不但有利于加工和装配,而且降低了大量的成本。  相似文献   

13.
The accuracy of topography imaging in contact force mode of atomic force microscopy (AFM) depends on the one-to-one corresponding relationship between the cantilever deflection and the tip–sample distance, whereas such a relationship cannot be always achieved in the presence of friction and incline angle of sample surface. Recently, we have developed a novel operation mode in which we keep the van der Waals force as constant instead of the applied normal force, to eliminate the effect of inclination angle and friction on topography imaging in the contact force mode. We have improved our AFM to enable the new operation mode for validation. Comparative experiments have been performed and the results have shown that the effect of friction and inclination angle on topography imaging in contact mode of AFM can be eliminated or at least decreased effectively by working in the new operation mode we present.  相似文献   

14.
在不同束流和能量下对离子光柱体进行了优化设计。给出了用阻尼最小二乘法设计的单个透镜和透镜系统,并研究了像平面处的离子束性能。采用先分解再组合的方法确定单个透镜参数,并以大束流、无限大放大倍数下像差系数与焦距的比为优化目标。选取工作模式时综合考虑了系统的光学性能和可实现性,大束流下采用平行模式,小束流下采用交叉模式,设计的透镜系统在大、小束流下分别选轴上像差和放大倍数为优化目标。计算表明,2 nA束流下像差为16.33 nm,放大倍数为-0.539 095 5,束斑直径为31.52 nm;2.5 pA束流下像差为2.15 nm,放大倍数为0.084 359 9,束斑直径为4.73 nm。此离子光柱体能够获得纳米量级的离子束,并且只需调整第二透镜第二、第三电极之间的距离以及第二电极电位(对源)就能改变样品处的束能,增加了光柱体的应用范围,实现了一套系统内同时具有刻蚀、沉积、注入和离子成像等功能。  相似文献   

15.
Principles and apparatus of multi-point forming for sheet metal   总被引:2,自引:2,他引:0  
As a flexible forming method for sheet metal part, multi-point forming (MPF) technology is discussed in the paper. It employs two reconfigurable element groups to approximate the continuous upper and lower solid dies. With the technique, rapid fabrication of 3D sheet metal part is realized. The principles of multi-point die forming (MPDF) and multi-point press forming (MPPF) are described and then the rules to determine the size of the element are given. For any spatial shape surface to be formed, all elements’ height can be calculated through the contacting point calculation equation. On the computer control, the shape of the two element groups can be adjusted by serial adjusting mode or parallel adjusting mode. MPDF apparatus that includes CAD software, computer control system, two element groups, hydraulic press and laser CMM is developed. Following the given MPF procedure, 3D sheet metal part was formed without failure. Due to the rapid change characteristics of the two element groups, several special MPF forming techniques that are impossible in conventional sheet forming have been investigated in detail. By flexible blank holder technique, thin sheet MPDF is realized. With sectional MPF, large size sheet would be formed on small scale MPF apparatus. Through closed loop MPF, spring-back would be compensated cycle by cycle, and large deformation part is obtained with incremental MPDF successfully.  相似文献   

16.
In 1898, Camillio Golgi reported a new cellular constituent with the form of an extensive intracellular network (the apparato reticolare interno), which now bears his name. However, the history of Golgi's apparatus is replete with controversy regarding its reality, what components of the cell should be included under its aegis, and what terminology should be used when referring to it. Electron microscopy has resolved many of these controversies and it is appropriate that this volume emphasize that aspect of Golgi apparatus discovery. The principal structural component of the Golgi apparatus is the stack of cisternae, or dictyosome. As determined both biochemically and at the level of electron microscopy, the dictyosome is a highly ordered and polarized structure. The maintenance of order within the stack is thought to result from either intercisternal bonding constituents, or filamentous structures (or both) that bridge the space between adjacent cisternae. Mechanisms proposed for movement of membrane and product into and out of the dictyosome (i.e., the Golgi apparatus stack) include a serial mode which functions exclusively by the formation, displacement, and loss of cisternae from the stack, and a parallel mode which functions exclusively by the movement of membrane, product, or precursor molecules directly into the peripheral edges of the cisternae. In the parallel mode, all cisternae can be accessed either singly or simultaneously, at least in theory, at any position within the stack. It is probable that both the serial and the parallel modes function concomitantly and need not be mutually exclusive. Finally, the peripheral tubules of the cisternae represent a major membranous constituent of the cell with potentially unique functions. These tubules interconnect cisternae of adjacent stacks and may represent the major site of receptors for the shuttle (i.e., parallel) type of transfer among cisternae. Peripheral tubules as extensions of the cisternal lumina into the cytoplasm presumably have other functions, but these, like the tubules themselves, have only rarely been accommodated into functional models of Golgi apparatus dynamics in secretion or membrane flow.  相似文献   

17.
In this theoretical study we analyze contrast transfer of weak-phase objects in a transmission electron microscope, which is equipped with an aberration corrector (C(s)-corrector) in the imaging lens system and a physical phase plate in the back focal plane of the objective lens. For a phase shift of pi/2 between scattered and unscattered electrons induced by a physical phase plate, the sine-type phase contrast transfer function is converted into a cosine-type function. Optimal imaging conditions could theoretically be achieved if the phase shifts caused by the objective lens defocus and lens aberrations would be equal to zero. In reality this situation is difficult to realize because of residual aberrations and varying, non-zero local defocus values, which in general result from an uneven sample surface topography. We explore the conditions--i.e. range of C(s)-values and defocus--for most favourable contrast transfer as a function of the information limit, which is only limited by the effect of partial coherence of the electron wave in C(s)-corrected transmission electron microscopes. Under high-resolution operation conditions we find that a physical phase plate improves strongly low- and medium-resolution object contrast, while improving tolerance to defocus and C(s)-variations, compared to a microscope without a phase plate.  相似文献   

18.
The fine structure of the in-situ rabbit crystalline ocular lens from the ex-vivo rabbit eye was observed with a confocal scanning laser microscope in the scattered light mode. The images were observed through the full thickness of the cornea and aqueous humour to a depth of 50 μm in the anterior ocular lens. The following structures were observed from optical sections of the ocular lens: two concentric regions of the lens capsule, epithelial cells, lens sutures, and surface and interior regions of individual lenticular fibres. The observed lateral resolution of the microscope objective was degraded by imaging across thick (millimetre) structures. This study shows the feasibility of obtaining high-contrast images of transparent objects across 1.7 mm of ocular tissue (cornea and aqueous humour) using confocal light microscopy.  相似文献   

19.
We demonstrate experimentally, for the first time, a new form of lensless microscopy. The image we obtain contains the entire wavefunction emanating from the sample. Large scale, quantitative phase information can be measured, unlike in conventional (Zernike) methods. For light optical experiments, we can dispense with expensive high-quality lenses and the very large working distances available would allow remote monitoring of e.g., environmental cells without compromising resolution. In short wavelength microscopy (X-rays and electrons), where lens components are of very limited numerical aperture, the technique has revolutionary implications: objects of any lateral size or shape can be used and, for transmission electron imaging, resolution down to the scale of the wavelength is likely to be limited only by the presence of atomic vibrations.  相似文献   

20.
Sun WX  Shen ZX 《Ultramicroscopy》2003,94(3-4):237-244
The combination of near-field scanning optical microscopy and Raman spectroscopy provides chemical/structural specific information with nanometer spatial resolution, which are critically important for a wide range of applications, including the study of Si devices, nanodevices, quantum dots, single molecules of biological samples. In this paper, we describe our near-field Raman study using apertureless probes. Our system has two important features, critical to practical applications. (1) The near-field Raman enhancement was achieved by Ag coating of the metal probes, without any preparation of the sample, and (2) while all other apertureless near-field Raman systems were constructed in transmission mode, our system works in the reflection mode, making near-field Raman study a reality for any samples. We have obtained the first 1D Raman mapping of a real Si device with 1s exposure time. This is a very significant development in near-field scanning Raman microscopy as it is the first demonstration that this technique can be used for imaging purpose because of the short integration time. In addition, the metal tips used in our set-up can be utilized to make simultaneous AFM and electrical mappings such as resistance and capacitance that are critical parameters for device applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号