首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method for the design of a linear-phase infinite-impulse-response (IIR) filter is presented. It involves designing a finite-impulse-response (FIR) filter satisfying the given frequency response specifications and subsequently obtaining a significantly lower order IIR filter using model reduction based on impulse-response gramians. The general outline of the method and a brief overview of the existing linear-phase FIR filter design and model-reduction techniques are presented. The impulse-response gramian and the model-reduction algorithm used are presented. The method is illustrated by design examples and is compared with other methods for the design of linear-phase IIR filters using equalizers  相似文献   

2.
This paper studies the H2 optimal deconvolution problem for periodic finite impulse response (FIR) and infinite impulse response (IIR) channels. It shows that the H2 norm of a periodic filter can be directly quantified in terms of periodic system matrices and linear matrix inequalities (LMIs) without resorting to the commonly used lifting technique. The optimal signal reconstruction problem is then formulated as an optimization problem subject to a set of matrix inequality constraints. Under this framework, the optimization of both the FIR and IIR periodic deconvolution filters can be made convex, solved using the interior point method, and computed by using the Matlab LMI Toolbox. The robust deconvolution problem for periodic FIR and IIR channels with polytopic uncertainties are further formulated and solved, also by convex optimization and the LMIs. Compared with the lifting approach to the design of periodic filters, the proposed approach is simpler yet more powerful in dealing with multiobjective deconvolution problems and channel uncertainties, especially for IIR deconvolution filter design. The obtained solutions are applied to the design of an optimal filterbank yielding satisfactory performance  相似文献   

3.
This paper presents a constructive method for (sub)optimal finite-impulse response (FIR) approximation of infinite-impulse response (IIR) models. The method minimizes the Hankel norm of the approximation error by using an explicit solution to the norm-preserved dilation problem. It has advantages over the existing methods in that it is a unified method for both single-input single-output and multiple-input multiple-output systems which allows direct tradeoff between the least-squares and Chebyshev error criteria by using a single tuning parameter, and that the approximation algorithm is constructive and only involves algebraic manipulations rather than iteration and convex optimization procedures. The lower and upper bounds on the l2 and Chebyshev norms of the approximation error are derived and are related to the tuning parameter. The problem of approximating noncausal IIR models by causal FIR models is also formulated and solved. The effectiveness and properties of the proposed algorithms are demonstrated by examples.  相似文献   

4.
This paper considers the design of linear-phase finite impulse response digital filters using an L1 optimality criterion. The motivation for using such filters as well as a mathematical framework for their design is introduced. It is shown that L1 filters possess flat passbands and stopbands while keeping the transition band comparable to that of least-squares filters. The uniqueness of L1-based filters is explored, and an alternation type theorem for the optimal frequency response is derived. An efficient algorithm for calculating the optimal filter coefficients is proposed, which may be viewed as the analogue of the celebrated Remez exchange method. A comparison with other design techniques is made, demonstrating that the L1 approach may be a good alternative in several applications.  相似文献   

5.
We have developed an algorithm based on synthetic division for deriving the transfer function that cancels the tail of a given arbitrary rational (IIR) transfer function after a desired number of time steps. Our method applies to transfer functions with repeated poles, whereas previous methods of tail-subtraction cannot. We use a parallel state-variable technique with periodic refreshing to induce finite memory in order to prevent accumulation of quantization error in cases where the given transfer function has unstable modes. We present two methods for designing linear-phase truncated IIR (TIIR) filters based on antiphase filters. We explore finite-register effects for unstable modes and provide bounds on the maximum TIIR filter length. In particular, we show that for unstable systems, the available dynamic range of the registers must be three times that of the data. Considerable computational savings over conventional FIR filters are attainable for a given specification of linear-phase filter. We provide examples of filter design. We show how to generate finite-length polynomial impulse responses using TIIR filters. We list some applications of TIIR filters, including uses in digital audio and an algorithm for efficiently implementing Kay's optimal high-resolution frequency estimator  相似文献   

6.
This work addresses the design of LoG filters in the frequency domain within a structure formed by the cascade of quasi-Gaussian and discrete Laplacian filters. The main feature of such a structure is that it requires half the number of convolutions of the classical structure in which the LoG transfer function is expressed as the sum of two separable transfer functions of 1-D Gaussian and LoG type. Such a perspective allows one to rephrase the design of IIR and FIR filters for edge detection as a frequency domain approximation problem solvable by standard digital filter design tools. The zero-phase IIR solutions have a good performance at low orders and approximation errors practically independent of the aperture parameter. The characteristics of the nearly linear-phase IIR filters solving the problem suggest the consideration of linear-phase FIR filters with zeros constrained on the unit circle. The use of such filters leads to remarkable computational savings with respect to the filters designed by impulse response sampling. The agreement between the edge values obtained by the filters designed according to the scheme proposed in this work and those obtained by standard techniques is very good.Work carried out with the financial support of the C.N.R.-Progetto Finalizzato Robotica, contract no. 91.01942.PF67.  相似文献   

7.
Iterative reweighted least-squares design of FIR filters   总被引:4,自引:0,他引:4  
Develops a new iterative reweighted least squares algorithm for the design of optimal Lp approximation FIR filters. The algorithm combines a variable p technique with a Newton's method to give excellent robust initial convergence and quadratic final convergence. Details of the convergence properties when applied to the Lp optimization problem are given. The primary purpose of Lp approximation for filter design is to allow design with different error criteria in pass and stopband and to design constrained L2 approximation filters. The new method can also be applied to the complex Chebyshev approximation problem and to the design of 2D FIR filters  相似文献   

8.
A technique to design IIR filters with linear phase in the passband is presented. This technique is based on model reduction of an FIR prototype using frequency weighting to improve the approximation in the transition region. Filters designed using the proposed technique are compared with linear-phase FIR designs and to IIR phase equalized designs with respect to computational complexity and group delay. It is shown that for highly selective filters, the proposed technique offers a good compromise  相似文献   

9.
针对L_2范数的非局部变分模型在迭代过程中未考虑图像局部梯度信息,模糊图像细节信息的缺点,提出了一种基于L_1范数的非局部变分模型。首先,对基于L_1范数的非局部变分模型的扩散性能进行了详细的分析。接着,将该模型应用于退化图像的复原中,并推导出该模型的Bregman交替迭代求解过程。最后,通过对比实验,证明本文提出的L_1范数的非局部变分复原模型能更好地重构图像的细节信息,相对于L_2范数的非局部变分模型峰值信噪比提高大于1dB,图像复原性能更优。  相似文献   

10.
针对FIR数字滤波器具有线性相位的充要条件,本文给出了必要性命题的严格证明,即证明线性相位FIR系统的单位脉冲响应必然为奇对称或偶对称,以弥补相关教材在这一问题论述的不足。论文由该证明过程进一步指出,有限阶次的因果IIR数字滤波器不可能具有线性相位。  相似文献   

11.
By using basis transformation, the Chebyshev approximation of linear-phase finite-impulse response (FIR) filters with linear equality constraints can be converted into an unconstrained one defined on a new function space. However, since the Haar condition is not necessarily satisfied in the new function space, the alternating property does not hold for the solution to the resulted unconstrained Chebyshev approximation problem. A sufficient condition for the best approximation is obtained in this brief, and based on this condition, an efficient single exchange algorithm is derived for the Chebyshev design of linear-phase FIR filters with linear equality constraints. Simulations show that the proposed algorithm can converge to the optimal solution in most cases and to a near-optimal solution otherwise. Design examples are presented to illustrate the performance of the proposed algorithm.  相似文献   

12.
13.
The design of two-channel linear-phase nonuniform-division filter (NDF) banks constructed by infinite impulse response (IIR) digital allpass filters (DAFs) in the sense of L/sub /spl infin// error criteria is considered. First, the theory of two-channel NDF bank structures using two IIR DAFs is developed. Then, the design problem is appropriately formulated to result in a simple optimization problem. Utilizing a variant of Karmarkar's algorithm, we can efficiently solve the optimization problem through a frequency sampling and iterative approximation method to find the coefficients for the IIR DAFs. The resulting two-channel NDF banks can possess approximately linear-phase response without magnitude distortion. The effectiveness of the proposed technique is achieved by forming an appropriate Chebyshev approximation of a desired phase response and then to find its solution from a linear subspace in a few iterations. Several simulation examples are presented for illustration and comparison.  相似文献   

14.
Perfect linear-phase two-channel QMF banks require the use of finite impulse response (FIR) analysis and synthesis filters. Although they are less expensive and yield superior stopband characteristics, perfect linear phase cannot be achieved with stable infinite impulse response (IIR) filters. Thus, IIR designs usually incorporate a postprocessing equalizer that is optimized to reduce the phase distortion of the entire filter bank. However, the analysis and synthesis filters of such an IIR filter bank are not linear phase. In this paper, a computationally simple method to obtain IIR analysis and synthesis filters that possess negligible phase distortion is presented. The method is based on first applying the balanced reduction procedure to obtain nearly allpass IIR polyphase components and then approximating these with perfect allpass IIR polyphase components. The resulting IIR designs already have only negligible phase distortion. However, if required, further improvement may be achieved through optimization of the filter parameters. For this purpose, a suitable objective function is presented. Bounds for the magnitude and phase errors of the designs are also derived. Design examples indicate that the derived IIR filter banks are more efficient in terms of computational complexity than the FIR prototypes and perfect reconstruction FIR filter banks. Although the PR FIR filter banks when implemented with the one-multiplier lattice structure and IIR filter banks are comparable in terms of computational complexity, the former is very sensitive to coefficient quantization effects  相似文献   

15.
It is shown that the singular-value decomposition (SVD) of the sampled amplitude response of a two-dimensional (2-D) digital filter possesses a special structure: every singular vector is either mirror-image symmetric or antisymmetric with respect to its midpoint. Consequently, the SVD can be applied along with 1-D finite impulse response (FIR) techniques for the design of linear-phase 2-D filters with arbitrary prescribed amplitude responses which are symmetrical with respect to the origin of the (ωΨω2) plane. The balanced approximation method is applied to linear-phase 2-D FIR filters of the type that may be obtained by using the SVD method. The method leads to economical and computationally efficient filters, usually infinite impulse response filters, which have prescribed amplitude responses and whose phase responses are approximately linear  相似文献   

16.
New L2 objective functions for the design of quadrature mirror filter (QMF) banks are proposed. They are based on the derivative information of the reconstruction error. Simple and explicit matrix-form formulas for the proposed objective functions are derived. Efficient design methods are proposed by incorporating a separability technique into the derived optimality conditions on prototype filters. The proposed design methods need only solve linear equation iteratively without nonlinear optimisation. Design examples demonstrate that good low-delay QMF banks and linear-phase QMF banks can be obtained in only a few iterations. Compared with the conventional approach, the new approach leads to QMF banks with larger stopband attenuation and smaller reconstruction errors  相似文献   

17.
Robust Huber adaptive filter   总被引:1,自引:0,他引:1  
Classical filtering methods are not optimal when the statistics of the signals violate the underlying assumptions behind the theoretical development. Most of the classical filtering theory like least-squares filtering assumes Gaussianity as its underlying distribution. We present a new adaptive filter that is optimal in the presence of Gaussian noise and robust to outliers. This novel robust adaptive filter minimizes the Huber objective function. An estimator based on the Huber objective function behaves as an L1 norm estimator for large residual errors and as an L2 norm estimator for small residual errors. Simulation results show the improved performance of the Huber adaptive filter (configured as a line enhancer) over various nonlinear filters in the presence of impulsive noise and Gaussian noise  相似文献   

18.
A closed form solution for the approximation of a linear-phase FIR (finite impulse response) filter with equiripple magnitude responsein the passband and stopband was not known. In this letter we present a closed form solution of some equiripple linear-phase half-band FIR filter approximation.  相似文献   

19.
A new procedure for the design of a real doubly complementary (DC) pair of digital filters obtained from an all-pass structure is presented. The filter design is based on a zero-phase FIR filter design with multi-band frequency specifications and approximate linear-phase characteristic. The resulting complex or real all-pass filter structure is guaranteed to be stable. Some examples illustrating the design method including comparisons with conventional approximately linear phase IIR filters are also shown  相似文献   

20.
The design of two-channel linear-phase quadrature mirror filter (QMF) banks constructed by real infinite impulse response (IIR) digital all-pass filters is considered. The design problem is appropriately formulated to result in a simple optimisation problem. Using a variant of Karmarkar's algorithm, the optimisation problem can be efficiently solved through a frequency sampling and iterative approximation method to find the real coefficients for the IIR digital all-pass filters. The resulting two-channel QMF banks possess an approximately linear phase response without magnitude distortion. The effectiveness of the proposed technique is achieved by forming an appropriate Chebyshev approximation of the desired phase response and then finding its solution from a linear subspace in a few iterations. Finally, several simulation examples are presented for illustration and comparison  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号