首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The removal of Cr(VI) from electroplating wastewater by coir pith was investigated in a fixed-bed column. The experiments were conducted to study the effect of important parameters such as bed depth (40-60cm) and flow rate (10-30ml min(-1)). At 0.05 C(t)/C(0), the breakthrough volume increased as flow rate decreased or a bed depth increased due to an increase in empty bed contact time (EBCT). The bed depth service time model (BDST) fit well with the experimental data in the initial region of the breakthrough curve, while the simulation of the whole curve using non-linear regression analysis was effective using the Thomas model. The adsorption capacity estimated from the BDST model was reduced with increasing flow rate, which was 16.40mg cm(-3) or 137.91mg Cr(VI)g(-1) coir pith for the flow rates of 10ml min(-1) and 14.05mg cm(-3) or 118.20mg Cr(VI)g(-1) coir pith for the flow rates of 30ml min(-1). At the highest bed depth (60cm) and the lowest flow rate (10mlmin(-1)), the maximum adsorption reached 201.47mg Cr(VI)g(-1) adsorbent according to the Thomas model. The column was regenerated by eluting chromium using 2M HNO(3) after adsorption studies. The desorption of Cr(III) in each of three cycles was about 67-70%. The desorption of Cr(III) in each cycle did not reach 100% due to the fact that Cr(V) was present through the reduction of Cr(VI), and was still in coir pith, possibly bound to glucose in the cellulose part of coir pith. Therefore, the Cr(V) complex cannot be desorbed in solution. The evidence of Cr(V) signal was observed in coir pith, alpha-cellulose and holocellulose extracted from coir pith using electron spin resonance (ESR).  相似文献   

2.
Chromium removal from electroplating wastewater by coir pith   总被引:3,自引:0,他引:3  
Coir pith is a by-product from padding used in mattress factories. It contains a high amount of lignin. Therefore, this study investigated the use of coir pith in the removal of hexavalent chromium from electroplating wastewater by varying the parameters, such as the system pH, contact time, adsorbent dosage, and temperature. The maximum removal (99.99%) was obtained at 2% (w/v) dosage, particle size <75microm, at initial Cr(VI) 1647mgl(-1), system pH 2, and an equilibrium time of 18h. The adsorption isotherm of coir pith fitted reasonably well with the Langmuir model. The maximum Cr(VI) adsorption capacity of coir pith at 15, 30, 45 and 60 degrees C was 138.04, 197.23, 262.89 and 317.65mgCr(VI)g(-1) coir pith, respectively. Thermodynamic parameters indicated an endothermic process and the adsorption process was favored at high temperature. Desorption studies of Cr(VI) on coir pith and X-ray absorption near edge structure (XANES) suggested that most of the chromium bound on the coir pith was in Cr(III) form due to the fact that the toxic Cr(VI) adsorbed on the coir pith by electrostatic attraction was easily reduced to less toxic Cr(III). Fourier transform infrared (FT-IR) spectrometry analysis indicated that the carbonyl (CO) groups and methoxy (O-CH(3)) groups from the lignin structure in coir pith may be involved in the mechanism of chromium adsorption. The reduced Cr(III) on the coir pith surface may be bound with CO groups and O-CH(3) groups through coordinate covalent bonding in which a lone pair of electrons in the oxygen atoms of the methoxy and carbonyl groups can be donated to form a shared bond with Cr(III).  相似文献   

3.
Coconut coir as biosorbent for Cr(VI) removal from laboratory wastewater   总被引:1,自引:0,他引:1  
A high cost-effective treatment of sulphochromic waste is proposed employing a raw coconut coir as biosorbent for Cr(VI) removal. The ideal pH and sorption kinetic, sorption capacities, and sorption sites were the studied biosorbent parameters. After testing five different isotherm models with standard solutions, Redlich-Peterson and Toth best fitted the experimental data, obtaining a theoretical Cr(VI) sorption capacity (SC) of 6.3 mg g(-1). Acid-base potentiometric titration indicated around of 73% of sorption sites were from phenolic compounds, probably lignin. Differences between sorption sites in the coconut coir before and after Cr adsorption identified from Fourier transform infrared spectra suggested a modification of sorption sites after sulphochromic waste treatment, indicating that the sorption mechanism involves organic matter oxidation and chromium uptake. For sulphocromic waste treatment, the SC was improved to 26.8+/-0.2 mg g(-1), and no adsorbed Cr(VI) was reduced, remaining only Cr(III) in the final solution. The adsorbed material was calcinated to obtain Cr(2)O(3,) with a reduction of more than 60% of the original mass.  相似文献   

4.
A resinous polymer, aniline formaldehyde condensate (AFC) coated on silica gel was used as an adsorbent in batch system for removal of hexavalent chromium from aqueous solution by considering the effects of various parameters like reaction pH, dose of AFC coated silica gel, initial Cr(VI) concentration and aniline to formaldehyde ratio in AFC synthesis. The optimum pH for total chromium [Cr(VI) and Cr(III)] adsorption was observed as 3. Total chromium adsorption was second order and equilibrium was achieved within 90-120 min. Aniline to formaldehyde ratio of 1.6:1 during AFC synthesis was ideal for chromium removal. Total chromium adsorption followed Freundlich's isotherm with adsorption capacity of 65 mg/g at initial Cr(VI) 200mg/L. Total chromium removal was explained as combinations of electrostatic attraction of acid chromate ion by protonated AFC, reduction of Cr(VI) to Cr(III) and bond formation of Cr(III) with nitrogen atom of AFC. Almost 40-84% of adsorbed chromium was recovered during desorption by NaOH, EDTA and mineral acids. AFC coated silica gel can be effectively used for treatment of chromium containing wastewaters as an alternative.  相似文献   

5.
Hu J  Chen C  Zhu X  Wang X 《Journal of hazardous materials》2009,162(2-3):1542-1550
The batch removal of hexavalent chromium (Cr(VI)) from aqueous solution by using oxidized multiwalled carbon nanotubes (MWCNTs) was studied under ambient conditions. The effect of pH, initial concentration of Cr(VI), MWCNT content, contact time and ionic strength on the removal of Cr(VI) was also investigated. The removal was favored at low pH with maximum removal at pH <2. The adsorption kinetics was modeled by first-order reversible kinetics, pseudo-first-order kinetics, pseudo-second-order kinetics, and intraparticle diffusion models, respectively. The rate constants for all these kinetic models were calculated, and the results indicate that pseudo-second-order kinetics model was well suitable to model the kinetic adsorption of Cr(VI). The removal of chromium mainly depends on the occurrence of redox reaction of adsorbed Cr(VI) on the surface of oxidized MWCNTs to the formation of Cr(III), and subsequent the sorption of Cr(III) on MWCNTs appears as the leading mechanism for chromium uptake to MWCNTs. The presence of Cr(III) and Cr(VI) on oxidized MWCNTs was confirmed by the X-ray photoelectron spectroscopic analysis. The application of Langmuir and Freundlich isotherms are applied to fit the adsorption data of Cr(VI). Equilibrium data were well described by the typical Langmuir adsorption isotherm. Overall, the study demonstrated that MWCNTs can effectively remove Cr(VI) from aqueous solution under a wide range of experimental conditions, without significant Cr(III) release.  相似文献   

6.
Adsorption isotherms of chromium ions in aqueous solution have been experimentally measured on a granular activated carbon (GAC) and on a char of South African coal (CSAC). Experimental results show that the adsorption capacity for the GAC strongly depends on solution pH and salinity, with maximum values around 7mg/g at neutral pH and low salinity levels. On the contrary, the CSAC shows a smaller adsorption capacity, near 0.3mg/g, which slightly decreases by increasing pH and salinity levels. Chromium adsorption mainly depends on the availability of chromium ions in solution and on the occurrence of redox reactions between the surface groups and the Cr(VI) which lead to the formation of Cr(III). The reduction of Cr(VI) and the following sorption of Cr(III) cations appears as the leading mechanism for chromium uptake on the CSAC. A similar behaviour can be observed for the GAC at pH below 3. On the contrary, at pH>7, the multicomponent competitive adsorption of Cr(VI), OH(-) and Cl(-) has to be considered.  相似文献   

7.
In this paper, we have presented the results of Cr(VI) and Cr(III) removal from aqueous phase by different aquatic weeds as biosorbents. Batch kinetic and equilibrium experiments were conducted to determine the adsorption kinetic rate constants and maximum adsorption capacities of selected biosorbents. In most of the cases, adsorption followed a second-order kinetics. For Cr(III), maximum adsorption capacity was exhibited by reed mat (7.18mg/g). In case of Cr(VI), mangrove leaves showed maximum removal/reduction capacity (8.87mg/g) followed by water lily (8.44mg/g). There was a significant difference in the concentrations of Cr(VI) and total chromium removed by the biosorbents. In case of Cr(VI) removal, first it was reduced to Cr(III) with the help of tannin, phenolic compounds and other functional groups on the biosorbent and subsequently adsorbed. Acid treatment significantly increased Cr(VI) removal capacity of the biosorbents whereas, alkali treatment reduced the Cr(VI) removal capacities of the biosorbents. FTIR spectrum showed the changes in functional groups during acid treatment and biosorption of Cr(VI) and Cr(III). Aquatic weeds seem to be a promising biosorbent for the removal of chromium ions from water environment.  相似文献   

8.
Three papers published during recent 2 years in Journal of Hazardous Materials made a mistake in analyzing chromium species in aqueous solution, resulting in incorrect elucidation of Cr(VI) biosorption; the Cr(VI) was removed from aqueous solution systems by 'anionic adsorption'. However, it has been proved that Cr(VI) is easily reduced to Cr(III) by contact with organic materials under acidic conditions because of its high redox potential value (above +1.3 V at standard condition). Therefore, it is strongly possible that the mechanism of Cr(VI) removal by biomaterials or biomaterial-based activated carbons is not "anionic adsorption" but "adsorption-coupled reduction". Thus, for researches of Cr(VI) biosorption, researchers have to analyze not only Cr(VI) but also total Cr in aqueous solution and to check the oxidation state of chromium bound on the biomaterials or activated carbons.  相似文献   

9.
Recently, Cr(VI) removal by grape stalks has been postulated to follow two mechanisms, adsorption and reduction to trivalent chromium. Nevertheless, the rate at which both processes take place and the possible simultaneity of both processes has not been investigated. In this work, kinetics of Cr(VI) sorption onto grape stalk waste has been studied. Experiments were carried out at different temperatures but at a constant pH (3 ± 0.1) in a stirred batch reactor. Results showed that three steps take place in the process of Cr(VI) sorption onto grape stalk waste: Cr(VI) sorption, Cr(VI) reduction to Cr(III) and the adsorption of the formed Cr(III). Taking into account the evidences above mentioned, a model has been developed to predict Cr(VI) sorption on grape stalks on the basis of (i) irreversible reduction of Cr(VI) to Cr(III) reaction, whose reaction rate is assumed to be proportional to the Cr(VI) concentration in solution and (ii) adsorption and desorption of Cr(VI) and formed Cr(III) assuming that all the processes follow Langmuir type kinetics. The proposed model fits successfully the kinetic data obtained at different temperatures and describes the kinetics profile of total, hexavalent and trivalent chromium.The proposed model would be helpful for researchers in the field of Cr(VI) biosorption to design and predict the performance of sorption processes.  相似文献   

10.
An electrochemical technique was adopted to investigate the removal of Cr(VI) species and total chromium (TCr) from aqueous solution at a laboratory scale. The electrodes of stainless steel nets (SSNE) coated with single wall carbon nanotubes (SWCNTs@SSNE) were used as both anode and cathode. Three parameters, including solution pH, voltage and electrolyte concentration, were studied to explore the optimal condition of chromium removal. The optimal parameters were found to be pH 4, voltage 2.5 V and electrolyte concentration 10 mg/L. Under these conditions, the Cr(VI) and TCr removal had a high correlation with the amount of SWCNTs coated on the electrodes, with coefficients of the regression equations 0.953 and 0.928, respectively. The mechanism of Cr(VI) removal was also investigated. X-ray photoelectron spectroscopy (XPS) study and scanning electron microscope (SEM) picture showed that the process of chromium removal involved the reduction of Cr(VI) to Cr(III) on the cathode, and then the adsorption of Cr(III) by SWCNTs on the cathode. The study results indicated that the proposed method provided an interesting means to remove chromium species from aqueous solution, especially Cr(VI) in acidic condition.  相似文献   

11.
Bioremediation of Cr(VI) in contaminated soils   总被引:5,自引:0,他引:5  
Ex situ treatment of hexavalent chromium (Cr(VI)) contaminated soil using a bioreactor-biosorption system was evaluated as a novel remediation alternative. Leaching of Cr(VI) from the contaminated soil using various eluents showed that desorption was strongly affected by the solution pH. The leaching process was accelerated at alkaline conditions (pH 9). Though, desorption potential of ethylene diamine tetra acetic acid (EDTA) was the maximum among various eluents tried, molasses (5 g/L) could also elute 72% of Cr(VI). Cr(VI) reduction studies were carried out under aerobic and facultative anaerobic conditions using the bacterial isolates from contaminated soil. Cr(VI) reduction was moderately higher in aerobic conditions than in facultative anaerobic conditions. The effect of various electron donors on Cr(VI) reduction was also investigated. Among five electron donors screened, peptone (10 g/L) showed maximum Cr(VI) reduction followed by molasses (10 g/L). The time required for complete Cr(VI) reduction was increased with increase in the initial Cr(VI) concentration. However, specific Cr(VI) reduction was increased with increase in initial Cr(VI) concentration. Sulfates and nitrates did not compete with Cr(VI) for accepting the electrons. A bioreactor was developed for the detoxification of Cr(VI). Above 80% of Cr(VI) reduction was achieved in the bioreactor with an initial Cr(VI) concentration of 50 mg/L at an HRT of 8 h. An adsorption column was developed using Ganoderm lucidum (a wood rooting fungus) as the adsorbent for the removal of trivalent chromium (Cr(III)) and excess electron donor from the effluent of the bioreactor. The specific Cr(III) adsorption capacity of G. lucidum in the column was 576 mg/g. The new biosystem seems to be a promising alternative for the ex situ bioremediation of Cr(VI) contaminated soils.  相似文献   

12.
The Cr(VI) could be adsorbed and reduced by the humic acid (HA)-Fe(II) system structured on the V, Ti-magnetite (VTM) surface. The Cr(VI) removal process included adsorption and reduction stages. First, the Cr(VI) was adsorbed on the VTM-HA surface via the ionic bonds between the Ti atoms of VTM core and the O atoms of the HCrO4?. The adsorption of Cr(VI) is uniform, monolayer, and controlled by Cr(VI) diffusion. Subsequently, the adsorbed Cr(VI) was reduced by the HA-Fe(II) system on the VTM-HA surface. During the Cr(VI) reduction process, the HA and Fe(II) have a synergistic effect. The Cr(VI) was reduced to the Cr(III) by the HA and Fe(II). Meanwhile, the HA could also reduce Fe(III) to Fe(II), making Fe(II) continue to participate in the Cr(VI) reduction. The olefin, hydroxyl, and aldehyde groups of HA were the primary electron donors during the Cr(VI) reduction. The Fe(II) acted as an electron bridge, transferring the electron from HA to Cr(VI). The reduced Cr(III) was deposited on the VTM-HA surface via the complexation with the carboxyl and hydroxyl groups of HA. The results demonstrated that the Cr(VI) could be adsorbed, reduced and complexed by the HA-Fe(II) system on the VTM-HA surface synchronously.  相似文献   

13.
In the present work, a solid phase extraction system has been proposed for speciation of Cr(III) and Cr(VI) in the real samples. The procedure based on the adsorption of chromium(III) as dithizonate chelate on the Chromosorb 108 resin. After reduction of Cr(VI) by concentrated H2SO4 and ethanol, the system was applied to the total chromium. Cr(VI) was calculated as the difference between the total Cr content and the Cr(III) content. The influences of the analytical parameters including pH of the aqueous solution, amounts of dithizone, eluent type, sample volume and flow rates of the sample and eluent solution were investigated. No considerable interferences have been observed from other investigated anions and cations on the chromium speciation. The adsorption capacity of sorbent was 4.50 mg/g Cr(III). The detection limit of Cr(III) is 0.75 microg/L. The proposed method was applied to the speciation of chromium in environmental samples including natural waters and total chromium preconcentration in microwave digested Turkish tobacco, coffee and soil samples with satisfactory results. In order to verify the accuracy of the method, two certified reference materials (NIST SRM 1573a Tomato Leaves and RTC-CRM 025-050 Metals on Soil) were analyzed and the results obtained were in good agreement with the certified values. The relative errors and relative standard deviations were below 5% and 9%, respectively.  相似文献   

14.
Chromium (VI) adsorption on boehmite   总被引:1,自引:0,他引:1  
Boehmite was synthesized and characterized in order to study the adsorption behavior and the removal of Cr(VI) ions from aqueous solutions as a function of contact time, initial pH solution, amount of adsorbent and initial metal ion concentration, using batch technique. Adsorption data of Cr(VI) on the boehmite were analyzed according to Freundlich, Langmuir and Dubinin-Radushkevich (D-R) adsorption models. Thermodynamic parameters for the adsorption system were determinated at 293, 303, 313 and 323K temperatures. The kinetic values and thermodynamic parameters from the adsorption process show that the Cr(VI) ions adsorption on boehmite is an endothermic and spontaneous process. These results show that the boehmite could be considered as a potential adsorbent for chromium ions in aqueous solutions.  相似文献   

15.
It is important to assess the effects of ionic strength when studying adsorption of metal ions on clay mineral because the background salt may complex metals and compete for adsorption sites. The sorption behavior of vermiculite pure clay mineral has been studied with respect to copper and chromium as a function of ionic strength in single metal ion solutions. Background electrolytes used in these experiments were KCl, NaCl and NH4Cl. The studies were conducted by a batch method at temperature 25 °C. The adsorption capacity and adsorption energy for each metal ion were calculated from the Langmuir adsorption isotherm.Also the competitive adsorption behavior of some heavy metal ions such as Cr(III), Cu(II), Ni(II) and Co(II) by vermiculite pure clay mineral was studied. The result shows the competition between coexisting heavy metal cations for the same adsorption sites of an adsorbent. However, when trivalent metal was added to the solution it competitively replaced divalent ions that had been previously adsorbed onto the vermiculite pure clay mineral, resulting in the desorption of these metals into the solution.  相似文献   

16.
The abundant lignocellulosic agricultural waste, coir pith is used to develop ZnCl(2) activated carbon and applied to the removal of toxic anions, heavy metals, organic compounds and dyes from water. Sorption of inorganic anions such as nitrate, thiocyanate, selenite, chromium(VI), vanadium(V), sulfate, molybdate, phosphate and heavy metals such as nickel(II) and mercury(II) has been studied. Removal of organics such as resorcinol, 4-nitrophenol, catechol, bisphenol A, 2-aminophenol, quinol, O-cresol, phenol and 2-chlorophenol has also been investigated. Uptake of acidic dyes such as acid brilliant blue, acid violet, basic dyes such as methylene blue, rhodamine B, direct dyes such as direct red 12B, congo red and reactive dyes such as procion red, procion orange were also examined to assess the possible use of the adsorbent for the treatment of contaminated ground water. Favorable conditions for maximum removal of all adsorbates at the adsorbate concentration of 20 mg/L were used. Results show that ZnCl(2) activated coir pith carbon is effective for the removal of toxic pollutants from water.  相似文献   

17.
Aim of this study is the determination of the Cr(VI) removal efficiency of treated pine sawdust and also to find out the thermodynamic and kinetic parameters of Cr(VI) removal process in batch systems. Sawdust has been treated with 1,5-disodium hydrogen phosphate before the adsorption experiments. The effects of initial concentration of Cr(VI) ion, temperature, amount of adsorbent and pH of the solution on adsorption have been investigated. Optimum conditions for adsorption were determined as T=40 degrees C, sawdust dose=4 g, pH 2, by using the results of these experiments and an additional set of experiments was performed under these optimum conditions in order to see the change in the adsorption efficiency. Removal of chromium ion was found as highly dependent on pH and initial Cr(VI) concentration of the solution. In order to find out thermodynamic and kinetic parameters equilibrium adsorption models were applied. Although experimental data confirm with both Langmuir and Freundlich isotherm models, they suit most on Langmuir isotherms. Adsorption rate constant was determined from Lagergren equation. Equilibrium constants, adsorption free energy, enthalpy and entropy change values were also determined. It was found that adsorption process follows first order kinetic and adsorption of Cr(VI) on sawdust has the spontaneous nature.  相似文献   

18.
This work presents conditions for hexavalent and trivalent chromium removal from aqueous solutions using natural, protonated and thermally treated Ectodermis of Opuntia. A removal of 77% of Cr(VI) and 99% of Cr(III) can be achieved. The sorbent material is characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy, infrared spectroscopy, thermogravimetric analysis, before and after the contact with the chromium containing aqueous media. The results obtained from the characterization techniques indicate that the metal ion remains on the surface of the sorbent material. The percentage removal is found to depend on the initial chromium concentration and pH. The Cr(VI) and Cr(III) uptake process is maximum at pH 4, using 0.1g of sorbent per liter of aqueous solution. The natural Ectodermis of Opuntia showed a chromium adsorption capacity that was adequately described by the Langmuir adsorption isotherm. Finally, an actual mine drainage sample that contained Cd, Cr, Cu, Fe Zn, Ni and Pb was tested under optimal conditions for chromium removal and Ectodermis of Opuntia was found to be a suitable sorbent material. The use of this waste material for the treatment of metal-containing aqueous solutions as well as mine drainage is effective and economical.  相似文献   

19.
This study proposed an oil palm by-product as a low-cost adsorbent for the removal of hexavalent chromium [Cr (VI)] from aqueous solution. Adsorption of Cr (VI) by sulphuric acid and heat-treated oil palm fibre was conducted using batch tests. The influence of pH, contact time, initial chromium concentration and adsorbent dosage on the removal of Cr (VI) from the solutions was investigated. The optimum initial pH for maximum uptake of Cr (VI) from aqueous solution was found to be 1.5. The removal efficiency was found to correlate with the initial Cr (VI) concentration, adsorbent dosage as well as the contact time between Cr (VI) and the adsorbent. The adsorption kinetics tested with pseudo first order and pseudo second order models yielded high R(2) values from 0.9254 to 0.9870 and from 0.9936 to 0.9998, respectively. The analysis of variance (ANOVA) showed significant difference between the R(2) values of the two models at 99% confidence level. The Freundlich isotherm (R(2)=0.8778) described Cr (VI) adsorption slightly better than the Langmuir isotherm (R(2)=0.8715). Difficulty in desorption of Cr (VI) suggests the suitability of treated oil palm fibre as a single-use adsorbent for Cr (VI) removal from aqueous solution.  相似文献   

20.
Dong D  Zhao X  Hua X  Liu J  Gao M 《Journal of hazardous materials》2009,162(2-3):1261-1268
The adsorption/desorption of Pb, Cd and Cr(VI) on moderately contaminated farmland soils in Northeast China and the effect of pH value on adsorption/desorption were investigated. Soil column leaching experiment was also carried out to further understand the mobility of the three metals in aeration zone of soil. Both Langmuir and Freundlich model gave good fits to the adsorption data of Pb and Cd, while the adsorption data of Cr(VI) followed linear adsorption isotherm. The adsorption/desorption of Pb, Cd and Cr(VI) obtained equilibrium in a few hours. Adsorption amounts of the three metals decreased in the order: Pb>Cd>Cr(VI). Desorption of the metals was insignificant at pH 5.0. Pb and Cd adsorption increased with pH, while Cr(VI) decreased. The effect of pH on desorption was contrary to that of adsorption. Leaching experiment showed that the mobility of these metals followed the order of Cr(VI)>Cd>Pb, which was consistent with the adsorption/desorption study. The results suggest that once soil is polluted by wastewater containing Pb and Cd, Pb and Cd tend to accumulating in topsoil and move downward very slowly, while the mobility of Cr(VI) in soil/groundwater system is much high because only limited amount of Cr(VI) were adsorbed by soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号