首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 169 毫秒
1.
简要介绍新研制的亚微压入仪(Submicron Indentation Tester)及其主要应用之一;硬度测量.该设备通过测量压痕深度而获得硬度值.其力加载是连续的,能够连续记录载荷压痕深度曲线.其特点是不但可测量材料表面某点亚微层的硬度值,还可在此范围内测量其硬度随层深分布曲线.该设备力加载最大范围:0~200g,力分辨率:≤1mg;压入深度测量范围:0~60μm,分辨率:≤1nm.  相似文献   

2.
黄健康  刘玉龙  刘光银  杨茂鸿  樊丁 《材料导报》2021,35(24):24117-24121,24127
采用纳米压痕测量仪对<100>、<110>、<111>不同取向的单晶铜进行了微纳米尺度纳米压痕试验,并对其硬度、约化弹性模量及卸载过程形貌等进行了对比分析.结果表明:在微纳米尺度下,不同取向单晶铜硬度值存在明显的尺寸效应,当压入深度小于30 nm时,单晶铜的硬度值随着压入深度的增加而增大,随后随着压入深度的增加而逐渐减小至0.8 GPa左右.<110>取向单晶铜的约化弹性模量值最大,<111>取向次之,<100>取向最小;<100>、<110>、<111>取向单晶铜的卸载表面均出现明显的堆积现象,其中<110>取向单晶铜出现明显的二维对称堆积形貌,<100>取向单晶铜的弹性恢复位移最大,而<110>取向单晶铜的弹性恢复位移最小.  相似文献   

3.
在纳米硬度计上对单晶硅进行了微压痕测试实验,以对单晶硅的微观力学性能有所认识。微压痕测试表明:单晶硅的弹性模量在压入载荷小于2400μN的范围内随载荷变化而波动变化;而在压入载荷大于2400μN后保持相对的稳定值(约为214GPa);单晶硅的表面硬度在压入载荷小于1000μN的范围内随载荷变化而线性增大,而后突然降低并保持相对的稳定值(13.5GPa~15GPa);单晶硅在纳米压入过程中,材料的破坏形式为脆性破裂,并且随压入载荷的增大而在压痕边沿产生堆积,堆积程度亦逐渐增大。  相似文献   

4.
目的陶瓷材料由于其固有硬脆性,难以利用传统单轴拉伸与压缩实验测试其蠕变性能,而纳米压痕测试技术对试样形状尺寸没有特殊要求,因此利用纳米压痕测试技术研究Si2N2O-Si3N4超细晶陶瓷的室温蠕变性能。方法针对1600,1650,1700℃条件下烧结制备的Si2N2O-Si3N4超细晶陶瓷,采用纳米压痕技术测试材料在最大载荷分别为5000,6000和7000μN条件下的载荷-位移曲线,并通过拟合计算获得了3种材料室温蠕变应力指数。结果 3种材料均呈现明显的加载效应。结论研究表明,在相同载荷下,压入深度和蠕变位移都随着材料烧结温度的升高而增大,且相同材料的蠕变应力指数,随着保压载荷的增大而减小。对比分析发现,在1600℃条件下烧结制备的Si2N2O-Si3N4超细晶陶瓷,晶粒细小均匀,晶界数多,室温下表现出较强的蠕变性能。  相似文献   

5.
两种微纳米硬度测试方法的比较   总被引:3,自引:0,他引:3  
在对材料微纳米硬度测试中,可利用纳米压痕方法得到载荷-位移曲线,并用相关算法得到接触面积和硬度值;也可通过原子力显微镜测出压痕残余面积,由残余面积和最大载荷得到材料的硬度值.利用这两种方法对塑性材料单晶铝和脆性材料单晶硅做微纳米硬度测试试验,经过比较分析,这两种方法各有优势和不足,得到的材料微纳米硬度都有压痕尺寸效应,但第二种方法得到的微纳米硬度尺寸效应比第一种明显.  相似文献   

6.
为研究单晶Cu材料的各向异性力学特性,针对单晶连铸技术制备的单晶Cu,采用电子背散射衍射(EBSD)法对其3个不同晶粒的晶面进行定向,利用原位纳米压痕仪在不同晶面进行不同压入载荷的纳米压痕实验.通过EBSD分析,发现用单晶连铸技术制备的单晶Cu在拉拔方向上具有较强的择优取向,单个晶粒较大,且晶粒内部没有(亚)晶界存在.纳米压痕实验结果表明单晶Cu样件在各种压痕载荷下的约化模量为50 GPa~120GPa,材料的晶体取向对纳米压痕载荷-位移曲线和约化模量有很大影响,面(032)比面(119)和面(041)有更大的约化模量.不同载荷下,硬度值在0.8 GPa左右变动,晶体取向对硬度的影响较小.实验所得单晶Cu各晶面约化模量与采用金属弹性力学理论计算所得数值吻合较好.  相似文献   

7.
利用磁控溅射方法在Si(111)衬底上制备了厚度为1μm的非晶SiN_x薄膜,采用纳米压痕方法研究了薄膜的变形和断裂行为。傅立叶变换红外光谱显示实验获得了较为纯净的SiN_x薄膜。SiN_x薄膜在纳米压痕下呈现出放射状的脆性断裂特征,随着压入深度的增大,放射状裂纹的长度逐渐增加。最大压入深度达到1 500nm时,薄膜和衬底间出现了扇形的界面断裂,并且这一界面断裂是在卸载过程中发生的。到最大压入深度达到2 500nm时,原位原子力显微镜照片可以清晰的观察到界面断裂及放射状裂纹。界面断裂韧性计算结果表明,SiN_x薄膜和Si(111)衬底间易形成脆性较大的共价结构界面,这是其界面断裂韧性较小的原因。  相似文献   

8.
使用三棱锥压头对不同倾斜角下的熔融石英硅进行纳米压痕实验。结果表明,试样倾斜会影响加载曲线的形状。在相同的载荷下,随着试样倾斜角的增加,压痕最大深度、残余深度及接触深度逐渐减小,但卸载曲线不受影响,彼此保持平行,卸载曲线的拟合参数m及接触刚度值保持恒定。另外,试样倾斜将导致测量的压痕接触面积偏小,从而使得测量的硬度和弹性模量偏大。  相似文献   

9.
评价气相沉积硬质薄膜的韧性具有重要的工程意义.本文讨论了压入法评价硬质薄膜韧性的原理、方法和参数选择.压入法的原理是载荷导致裂纹形核、扩展,最终形成压痕周围的径向裂纹,而断裂韧性和裂纹之间存在对应关系.压入法的方法是比较压痕形貌特征,其主要影响因素有基体和载荷.对于韧性基体(如金属),小载荷时硬质薄膜与金属同步塑性变形;大载荷下薄膜破裂,但这种情况可能是结合失效破裂,并不反映薄膜的韧性.对于脆性基体(如硅片),小载荷时裂纹会在Si片中形核,并扩展到薄膜中,形成压痕对角线径向裂纹;大载荷时薄膜会严重破裂.定量评价薄膜韧性时,一般采用硬质薄膜/Si片体系,以0.98~9.8N载荷压入脆性基体,采用纳米压入仪测定薄膜的硬度和弹性模量,采用显微镜测量径向裂纹的长度,利用Lawn公式计算得到断裂韧性值.  相似文献   

10.
热处理温度对热解炭及炭/炭复合材料力学性能的影响   总被引:3,自引:0,他引:3  
以丙烷为气源,采用等温等压化学气相渗透技术制备了炭/炭复合材料,利用X射线衍射、偏光显微镜、扫描电镜、纳米压痕仪、三点弯曲法研究了热处理温度对热解炭以及炭/炭复合材料微观结构和力学性能的影响.微观结构观察显示随着热处理温度的升高,热解炭层间距减小,同时石墨化度提高;由于发生了局部应力石墨化,热解炭出现同心微裂纹,并且随热处理温度的升高裂纹的数量和宽度增加.纳米压痕测试表明,热解炭的纳米压痕行为是完全的弹性形变,完全卸载后热解炭表面没有残余压痕,但加载和卸载曲线没有重合而是存在一定的能量耗散,随着热处理温度的升高,热解炭的弹性模量增大.热处理后纤维强度降低,并且纤维与基体炭界面脱离,导致炭/炭复合材料的弯曲强度和模量下降.  相似文献   

11.
A method using finite element method (FEM) is proposed to evaluate the geometry effect of indenter tip on indentation behavior of film/substrate system. For the nanoindentation of film/substrate system, the power function relationship is proposed to describe the loading curve of the thin film indentation process due to substrate effect. The exponent of the power function and the maximum indentation load can reflect the geometry effect of indenter and substrate effect. In the forward analysis, FEM is used to simulate the indentation behavior of thin film with different apex angles of numerical conical indenter tip, and maximum indentation load and loading curve exponent are obtained from the numerical loading curves. Meanwhile, the dimensionless equations between the loading curve exponent, the maximum load, elastic properties of film/substrate system and apex angle of indenter are established considering substrate effect. In the reverse analysis, a nanoindentation test was performed on thin film to obtain the maximum indentation load and the loading curve exponent, and then the experimental data is substituted into the dimensionless equations. The elastic modulus of thin film and the real apex angle of indenter can be obtained by solving the dimensionless equations. The results can be helpful to the measurement of the mechanical properties of thin films by means of nanoindentation.  相似文献   

12.
The traditional nanoindentation method provides experimental data for the calibrating mechanical parameters of nanobelt through semi-empirical formulae. In this paper, a technique to identify Young’s modulus of nanobelts with different aspect ratios is introduced combining finite element method (FEM) and nanoindentation test. For the nanobelt on the substrate, the power function relationship is used to describe the loading curve of the nanobelt indentation behavior. The loading curve exponent of the power function which is the fitting parameter can reflect the influence of aspect ratio of nanobelt on Young’s modulus of nanobelts as well as the maximum indentation load. In the forward analysis, considering the substrate effect and the size effect, the numerical loading responses are simulated at the appropriate penetration depth, and then the dimensionless equations between the parameters characterizing the indentation loading curve and the properties of nanobelt/substrate system can be established via extensive FEM simulation. In the reverse analysis, the nanoindentation tests were performed on ZnO and ZnS nanobelts, and the experimental indentation loading curves can be fitted as power function. The maximum indentation loads and the loading curve exponents are extracted from two experimental loading curves, and then they are substituted into the dimensionless equations to solve the Young’s moduli of ZnO and ZnS nanobelts. The results show the Young’s moduli solved are close to previous values, indicating that the Young’s moduli are reasonable. This developed method is effective to identify the Young’s modulus of nanobelt and it can be applied to identify the Young’s modulus of other nanobelts in practice.  相似文献   

13.
Experimental measurements and finite element simulations have been used to study the effect of residual stresses on the nanoindentation response of an aerospace-grade aluminium alloy. Tensile and compressive residual stresses lead to changes in the nanoindentation load–displacement curves. Loading and unloading curves were studied to observe the effect of residual stresses. The maximum load of indentation, curvature of the loading curve, elastically recovered depth, work of indentation, pile-up and contact area were measured and found to have a linear relationship with residual stress. To calculate residual stress from the load–displacement curve, it was concluded that pile-up should be measured carefully. The paper presents a methodology of calculation of area of contact based on the work of indentation which can be extracted from the nanoindentation load–displacement data. This allows extraction of the residual stresses from experimental nanoindentation data for aerospace aluminium alloys which generate pile-up and for which the true calculation of contact area without imaging is very difficult. Methods previously published in the literature have been assessed against the current approach.  相似文献   

14.
Abstract

The plastic deformation of a high entropy alloy Al0.5CoCrFeNi was investigated by instrumented nanoindentation over a broad range of strain rates at room temperature. Results show that the creep behaviour depends on the strain rate remarkably. In situ scanning images showed a significant pile up around the indents, demonstrating that a highly localised plastic deformation occurred in the process of nanoindentation. Under different strain rates, contact stiffness and elastic modulus basically remain unchanged. However, the hardness decreases as indentation depth increases due to indentation size effect. For the same maximum load, serrations became less prominent as the loading rate of indentation increased. Similar serrations have been observed in the current alloy upon quasi-static compression.  相似文献   

15.
J. Chen 《Vacuum》2009,83(6):911-2499
The nanoindentation test is the only viable approach to assess the properties of very thin coatings (<1 μm) since it can operate at the required scale and provides a fingerprint of the indentation response of the coating/substrate system. To measure the hardness of the coating only it is traditionally assumed that, as a rule-of-thumb, when the relative indentation depth (RID, i.e. the penetration divided by the coating thickness) is less than 0.1, the substrate will not affect the measured hardness of the coating. However, it is found that this rule is too strict for some and too loose for other coated systems. In this paper we present a comprehensive investigation of the factors influencing the critical relative indentation depth (CRID) using finite element simulation. The CRID is very sensitive to tip radius for soft coatings on hard substrates. For most coating/substrate combinations at reasonable penetration depths the 0.1 rule-of-thumb is a safe estimate. It is shown that the elastic property mismatch between coating and substrate also has an important effect on the measured hardness and this means that the Oliver and Pharr method generally used to extract hardness from nanoindentation data may give inaccurate results in coating/substrate systems with significant elastic mismatch.  相似文献   

16.
In nanoindentation testing of materials, the analytical/numerical models to connect the indentation load, indentation depth and material properties are crucial for the extraction of mechanical properties. This paper studied the methods of extracting the mechanical properties of nonlinear elastic materials and built general relationships of the indentation load and depth of hyperelastic materials combined with the dimensional analysis and finite element method (FEM). Compared with the elastic contact models and other nonlinear elastic contact models, the proposed models can extract the mechanical properties of nonlinear elastic materials under large deformation simply and effectively.  相似文献   

17.
刘明  严富文  高诚辉 《计量学报》2020,41(9):1095-1101
使用Rockwell C金刚石圆锥压头对紫铜进行微米划痕实验,研究了法向载荷对样品的微米划痕测试的影响。结果表明:随着法向载荷的增大,压入深度和残余深度均线性增加,弹性恢复率线性减小;划痕宽度随压入深度的增加先非线性地增大,之后趋于线性增加。当法向载荷在0.08~0.11N的范围内时,摩擦力线性增大,摩擦系数趋于一个常数,摩擦机制为粘着摩擦;当法向载荷在0.11~17N的范围内时,摩擦力和摩擦系数非线性地增大,摩擦机制为犁沟摩擦;当法向载荷在17~28N的范围内时,摩擦系数趋于一个常数,摩擦力线性增大,摩擦机制为微切削。  相似文献   

18.
采用准静态和动态纳米压痕技术研究了羟基磷灰石/聚乳酸(HA/PLA)复合材料在微纳尺度的表面力学性能。在静态模式下研究了保载和卸载时间对模量和硬度测试结果的影响。结果发现,当保载时间小于45 s时,由于蠕变使保载和卸载时间对测试结果产生显著影响;保载时间短且卸载时间长时,在卸载段会形成"鼻子",为了避免"鼻子"选择保载时间为45 s。在动态模式下研究了材料的动态力学性能,结果表明,存储模量和硬度均随着压入深度的增加而减小。压痕和划痕实验结果均表明:HA显著提高了PLA的力学性能,与纯PLA相比,9wt% HA/PLA复合材料的模量增加了35.5%,硬度增加了44.7%,蠕变深度下降了9.5%,相同载荷下的最大划痕深度和残余深度均小于纯PLA,表现出良好的弹性恢复能力和抗变形能力。  相似文献   

19.
The behaviour of microhardness under varying load was investigated with an apparatus which measured both load and diamond pyramid motion simultaneously. There have been several experiments with this type of apparatus, which are designed to measure the hardness under load of a material. This type of measurement eliminates the effect of elastic recovery after the diamond is removed from the sample. Two types of load-independent hardness have been proposed on the basis of studies performed on this type of apparatus. The first follows the theory of Tate stating that elastic recovery is responsible for the load dependence of hardness. The second, proposed by Froelichet al. states that the load dependence of hardness is due to surface forces. This investigation used an apparatus similar to that of Froehlichet al. The results indicated that the load-independent hardness of Froehlichet al. was an experimental artifice caused by late detection of the surface, leading to underestimation of the penetration and overestimation of the hardness. Hardness measured under load using the apparatus in the present project was found to be load dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号