首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A steep inwardly directed Na+ gradient is essential for glial functions such as glutamate reuptake and regulation of intracellular ion concentrations. We investigated the effects of glucose deprivation, chemical hypoxia, and simulated ischemia on intracellular Na+ concentration ([Na+]i) in cultured spinal cord astrocytes using fluorescence ratio imaging with sodium-binding benzofuran isophthalate (SBFI) AM. Glucose removal or chemical hypoxia (induced by 10 mM NaN3) for 60 min increased [Na+]i from a baseline of 8.3 to 11 mM. Combined glycolytic and respiratory blockage by NaN3 and 0 glucose saline caused [Na+]i to increase by 20 mM, similar to the [Na+]i increases elicited by blocking the Na+/K+-ATPase with ouabain. Recovery from large [Na+]i increases (>15 mM) induced by the glutamatergic agonist kainate was attenuated during glucose deprivation or NaN3 application and was blocked in NaN3 and 0 glucose. To mimic in vivo ischemia, we exposed astrocytes to NaN3 and 0 glucose saline containing L-lactate and glutamate with increased [K+] and decreased [Na+], [Ca2+], and pH. This induced an [Na+]i decrease followed by an [Na+]i rise and a further [Na+]i increase after reperfusion with standard saline. Similar multiphasic [Na+]i changes were observed after NaN3 and 0 glucose saline with only reduced [Na+]e. Our results suggest that the ability to maintain a low [Na+]i enables spinal cord astrocytes to continue uptake of K+ and/or glutamate at the onset of energy failure. With prolonged energy failure, however, astrocytic [Na+]i rises; with loss of their steep transmembrane Na+ gradient, astrocytes may aggravate metabolic insults by carrier reversal and release of acid, K+, and/or glutamate into the extracellular space.  相似文献   

2.
Several inhibitors of mitochondrial complex II cause neuronal death in vivo and in vitro. The goal of the present work was to characterize in vitro the effects of malonate (a competitive blocker of the complex) which induces neuronal death in a pattern similar to that seen in striatum in Huntington's disease. Exposure of striatal and cortical cultures from embryonic rat brain for 24 h to methylmalonate, a compound which produces malonate intracellularly, led to a dose-dependent cell death. Methylmalonate (10 mM) caused >90% mortality of neurons although cortical cells were unexpectedly more vulnerable. Cell death was attenuated in a medium containing antioxidants. Further characterization revealed that DNA laddering could be detected after 3 h of treatment. Morphological observations (videomicroscopy and Hoechst staining) showed that both necrotic and apoptotic cell death occurred in parallel; apoptosis was more prevalent. A decrease in the ATP/ADP ratio was observed after 3 h of treatment with 10 mM methylmalonate. In striatal cultures it occurred concomitantly with a decline in GABA and a rise in aspartate content and the aspartate/glutamate ratio. Changes in ion concentrations were measured in similar cortical cultures from mouse brain. Neuronal [Na+]i increased while [K+]i and membrane potential decreased after 20 min of continuous incubation in 10 mM methylmalonate. These changes progressed with time, and a rise in [Ca2+]i was also observed after 1 h. The results demonstrate that malonate collapses cellular ion gradients, restoration of which imposes an additional load on the already compromised ATP-generation machinery. An early elevation in [Ca2+]i may trigger an increase in activity of proteases, lipases and endonucleases and production of free radicals and DNA damage which, ultimately, leads to cells death. The data also suggest that maturational and/or extrinsic factors are likely to be critical for the increased vulnerability of striatal neurons to mitochondrial inhibition in vivo.  相似文献   

3.
The postsynaptic actions of glutamate are rapidly terminated by high affinity glutamate uptake into glial cells. In this study we demonstrate the stimulation of both glutamate uptake and Na,K-ATPase activity in rat astrocyte cultures in response to sublethal ischemia-like insults. Primary cultures of neonatal rat cortical astrocytes were subjected to hypoxia, or to serum- and glucose-free medium, or to both conditions (ischemia). Cell death was assessed by propidium iodide staining of cell nuclei. To measure sodium pump activity and glutamate uptake, 3H-glutamate and 86Rb were both simultaneously added to the cell culture in the presence or absence of 2 mM ouabain. Na,K-ATPase activity was defined as ouabain-sensitive 86Rb uptake. Concomitant transient increases (2-3 times above control levels) of both Na,K-ATPase and glutamate transporter activities were observed in astrocytes after 4-24 h of hypoxia, 4 h of glucose deprivation, and 2-4 h of ischemia. A 24 h ischemia caused a profound loss of both activities in parallel with significant cell death. The addition of 5 mM glucose to the cells after 4 h ischemia prevented the loss of both sodium pump activity and glutamate uptake and rescued astrocytes from death observed at the end of 24 h ischemia. Reoxygenation after the 4 h ischemic event caused the selective inhibition of Na,K-ATPase activity. The observed increases in Na,K-ATPase activity and glutamate uptake in cultured astrocytes subjected to sublethal ischemia-like insults may model an important functional response of astrocytes in vivo by which they attempt to maintain ion and glutamate homeostasis under restricted energy and oxygen supply.  相似文献   

4.
The metabolic fate of glutamate in astrocytes has been controversial since several studies reported > 80% of glutamate was metabolized to glutamine; however, other studies have shown that half of the glutamate was metabolized via the tricarboxylic acid (TCA) cycle and half converted to glutamine. Studies were initiated to determine the metabolic fate of increasing concentrations of [U-13C] glutamate in primary cultures of cerebral cortical astrocytes from rat brain. When astrocytes from rat brain were incubated with 0.1 mM [U-13C] glutamate 85% of the 13C metabolized was converted to glutamine. The formation of [1,2,3-13C3] glutamate demonstrated metabolism of the labeled glutamate via the TCA cycle. When astrocytes were incubated with 0.2-0.5 mM glutamate, 13C from glutamate was also incorporated into intracellular aspartate and into lactate that was released into the media. The amount of [13C] lactate was essentially unchanged within the range of 0.2-0.5 mM glutamate, whereas the amount of [13C] aspartate continued to increase in parallel with the increase in glutamate concentration. The amount of glutamate metabolized via the TCA cycle progressively increased from 15.3 to 42.7% as the extracellular glutamate concentration increased from 0.1 to 0.5 mM, suggesting that the concentration of glutamate is a major factor determining the metabolic fate of glutamate in astrocytes. Previous studies using glutamate concentrations from 0.01 to 0.5 mM and astrocytes from both rat and mouse brain are consistent with these findings.  相似文献   

5.
We monitored simultaneously the changes in the intracellular sodium concentration ([Na+]i) and intracellular calcium concentration ([Ca2+]i) in individual neurons from primary cultures of cerebellar granule cells loaded with sodium-binding benzofuran isophthalate and fluo-3. An application of glutamate (50 microM) in Mg(2+)-free medium containing 10 microM glycine evoked [Na+]i and [Ca2+]i increases that exceeded 60 mM and 1 microM, respectively. The kinetics of [Na+]i and [Ca2+]i decreases after the termination of the glutamate pulse were different. [Na+]i failed to decrease immediately after glutamate withdrawal and the delay in the onset of [Na+]i decrease after the glutamate pulse termination was proportional to the glutamate dose, the glutamate pulse duration, and the extent of [Ca2+]i elevation elicited by glutamate. The kinetics of [Ca2+]i decrease were biphasic, with the first phase occurring immediately after glutamate withdrawal and the second phase being correlated in time with a [Na+]i value lower than 15-20 mM. These results were interpreted to indicate that the glutamate-evoked calcium influx may lead to sodium homeostasis destabilization. The delay in the restoration of the sodium gradient may in turn prolong the neuronal exposure to toxic [Ca2+]i values, due to the decrease in the efficiency of the Na+/Ca2+ exchanger to extrude calcium. The glutamate effects on [Na+]i and [Ca2+]i were potentiated by glycine. Glycine (10 microM) added alone also evoked [Na+]i and [Ca2+]i increases; this effect was inhibited by a competitive inhibitor of the N-methyl-D-aspartate receptor, 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid, indicating an involvement of endogenous glutamate.  相似文献   

6.
The present study was undertaken to examine the effects of diminished extracellular sodium concentration on the vascular action of arginine vasopressin (AVP) in cultured rat vascular smooth muscle cells (VSMC). The preincubation of cells with the 110 mM extracellular Na+ ([Na+]e) solution supplemented with 30 mM choline chloride for 60 minutes enhanced the effect of AVP- (1 x 10(-8) M) induced VSMC contraction. The treatment of 110 mM [Na+]e solution also enhanced the cellular contractile response to the protein kinase C (PKC) activators, phorbol 12-myristate 13-acetate and 1-oleoyl-2-acetyl-glycerol. Furthermore, preincubation with the 110 mM [Na+]e solution also potentiated the effect of 1 x 10(-8) M AVP, but not 1 x 10(-6) M, to increase the cytosolic-free Ca2+ ([Ca2+]i) concentration. The 110 mM [Na+]e media decreased the basal intracellular Na+ concentration and increased intracellular 45Ca2+ accumulation, basal [Ca2+]i and AVP-produced 45Ca2+ efflux. These effects of 110 mM [Na+]e solution to enhance the vascular action of AVP were abolished by using Ca(2+)-free 110 mM [Na+]e solution during the preincubation period. The preincubation with the 110 mM [Na+]e solution did not change either the Kd and Bmax of AVP V1 receptor of VSMC or the AVP-induced production of inositol 1,4,5-trisphosphate. The present in vitro results therefore indicate that the diminished extracellular fluid sodium concentration within a range observed in clinical hyponatremic states enhances the vascular action of AVP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The protective effect of l-cis-diltiazem, the stereoisomer of d-cis-diltiazem, was studied against the veratridine-induced hypercontracture of rat myocytes. Veratridine increased both [Na+]i and [Ca2+]i, but did not cause hypercontracture in the absence of extracellular Ca2+. Both l-cis-diltiazem (0.1-10 microM) and d-cis-diltiazem (10-30 microM) inhibited the hypercontracture and the increase in [Ca2+]i in a concentration-dependent manner. However, l-cis-diltiazem did not exert a negative inotropic effect in K+ (20 mM)-depolarized rat papillary muscles even at a dose of 10 microM. As seen in the case of tetrodotoxin, l-cis-diltiazem and d-cis-diltiazem also suppressed the increase in [Na+]i. The results show that l-cis-diltiazem prevents the veratridine-induced hypercontracture of myocytes by suppression of the [Ca2+]i increase. The attenuation of the [Ca2+]i increase by l-cis-diltiazem was not dependent on inhibition of Ca2+ channels, but was partly due to inhibition of excessive Na+ entry via veratridine-modified Na+ channels.  相似文献   

8.
The effects of endurance run training on Na+-dependent Ca2+ regulation in rat left ventricular myocytes were examined. Myocytes were isolated from sedentary and trained rats and loaded with fura 2. Contractile dynamics and fluorescence ratio transients were recorded during electrical pacing at 0.5 Hz, 2 mM extracellular Ca2+ concentration, and 29 degreesC. Resting and peak cytosolic Ca2+ concentration ([Ca2+]c) did not change with exercise training. However, resting and peak [Ca2+]c increased significantly in both groups during 5 min of continuous pacing, although diastolic [Ca2+]c in the trained group was less susceptible to this elevation of intracellular Ca2+. Run training also significantly reduced the rate of [Ca2+]c decay during relaxation. Myocytes were then exposed to 10 mM caffeine in the absence of external Na+ or Ca2+ to trigger sarcoplasmic reticular Ca2+ release and to suppress cellular Ca2+ efflux. This maneuver elicited an elevated steady-state [Ca2+]c. External Na+ was then added, and the rate of [Ca2+]c clearance was determined. Run training significantly reduced the rate of Na+-dependent clearance of [Ca2+]c during the caffeine-induced contractures. These data demonstrate that the removal of cytosolic Ca2+ was depressed with exercise training under these experimental conditions and may be specifically reflective of a training-induced decrease in the rate of cytosolic Ca2+ removal via Na+/Ca2+ exchange and/or in the amount of Ca2+ moved across the sarcolemma during a contraction.  相似文献   

9.
Ouabain-induced changes of the free cytoplasmic Na+ concentration ([Na+]i) were monitored in aggregates of cells prepared from beta-cell-rich pancreatic mouse islets and the results were compared with the total islet content of sodium. The steady-state [Na+]i was lower in 20 mM glucose (11 mM) than in 3 mM glucose (14 mM). In the presence of 3 mM glucose the addition of 1 mM ouabain resulted in a rise in [Na+]i with an initial rate of 1.5 mM/min. However, the increase of total sodium corresponded to 2.8 mM/min, suggesting that rapid binding and/or sequestration of Na+ are prominent features for pancreatic beta-cells. Elevation of the glucose concentration to 20 mM increased the rate of ouabain-dependent rise of [Na+]i. The effect of glucose was mimicked by 1 mM tolbutamide or 100 microM carbachol and was counteracted by 100 nM of the alpha 2-adrenergic agonist clonidine. Glucose also accelerated the lowering of [Na+]i after withdrawal of ouabain. In promoting not only the entry but also the extrusion of Na+, glucose actually enhances the turnover of the ion in pancreatic beta-cells.  相似文献   

10.
GABAA receptor alpha6 subunit gene expression marks cerebellar granule cell maturation. To study this process, we used the Deltaalpha6lacZ mouse line, which has a lacZ reporter inserted into the alpha6 gene. At early stages of postnatal cerebellar development, alpha6-lacZ expression is mosaic; expression starts at postnatal day 5 in lobules 9 and 10, and alpha6-lacZ is switched on inside-out, appearing first in the deepest postmigratory granule cells. We looked for factors regulating this expression in cell culture. Membrane depolarization correlates inversely with alpha6-lacZ expression: granule cells grown in 25 mM [K+]o for 11-15 d do not express the alpha6 gene, whereas cultures grown for the same period in 5 mM [K+]o do. This is influenced by a critical early period: culturing for >/=3 d in 25 mM [K+]o curtails the ability to induce the alpha6 gene on transfer to 5 mM [K+]o. If the cells start in 5 mM [K+]o, however, they still express the alpha6-lacZ gene in 25 mM [K+]o. In contrast to granule cells grown in 5 mM [K+]o, cells cultured in 25 mM [K+]o exhibit no action potentials, mEPSCs, or mIPSCs. In chronic 5 mM [K+]o, factors may therefore be released that induce alpha6. Blockade of ionotropic and metabotropic GABA and glutamate receptors or L-, N-, and P/Q-type Ca2+ channels did not prevent alpha6-lacZ expression, but inhibition of action potentials with tetrodotoxin blocked expression in a subpopulation of cells.  相似文献   

11.
Effects of increasing extracellular K+ or intracellular Na+ concentrations on glucose metabolism in cultures of rat astroglia and neurons were examined. Cells were incubated in bicarbonate buffer, pH 7.2, containing 2 mM glucose, tracer amounts of [14C]deoxyglucose ([14C]dGlc), and 5.4, 28, or 56 mM KCl for 10, 15, or 30 min, and then for 5 min in [14C]dGlc-free buffer to allow efflux of unmetabolized [14C]dGlc. Cells were then digested and assayed for labeled products, which were shown to consist of 96-98% [14C]deoxyglucose 6-phosphate. Increased K+ concentrations significantly raised [14C]deoxyglucose 6-phosphate accumulation in both neuronal and mixed neuronal-astroglial cultures at 15 and 30 min but did not raise it in astroglial cultures. Veratridine (75 microM), which opens voltage-dependent Na+ channels, significantly raised rates of [14C]dGlc phosphorylation in astroglial cultures (+20%), and these elevations were blocked by either 1 mM ouabain, a specific inhibitor of Na+,K(+)-ATPase (EC 3.6.1.37), or 10 microM tetrodotoxin, which blocks Na+ channels. The carboxylic sodium ionophore, monensin (10 microM), more than doubled [14C]dGlc phosphorylation; this effect was only partially blocked by ouabain and unaffected by tetrodotoxin. L-Glutamate (500 microM) also stimulated [14C]dGlc phosphorylation in astroglia--not through N-methyl-D-aspartate or non-N-methyl-D-aspartate receptor mechanisms but via a Na(+)-dependent glutamate-uptake system. These results indicate that increased uptake of Na+ can stimulate energy metabolism in astroglial cells.  相似文献   

12.
Using the technique of vanadate-facilitated [3H]ouabain binding we have developed a simple and reliable assay for measuring the concentration of [3H]ouabain binding sites in small fresh or frozen biopsies of rumen epithelium papillae. In bovine and ovine rumen epithelium obtained from the cranio-ventral rumen sac the concentration of [3H]ouabain binding sites was 1.6-4.9 nmol g dry wt-1 (n = 32) and 3.7-5.2 nmol g dry wt-1 (n = 6), respectively. When incubated in oxygenated Krebs-Ringer bicarbonate buffer fresh biopsies of rumen epithelium maintained a high K+ and low Na+ content for at least 6 h. Na+ loading of the biopsies induced about 20-fold increase of the Na+, K(+)-pump activity based on measurement of ouabain suppressible net [86Rb+] influx. The ouabain suppressible net influx of [86Rb+] measured in Na+ loaded biopsies showed a close correlation to the [3H]ouabain binding capacity (r = 0.80, P < 0.01) and corresponded to 47 +/- 2% (n = 9) of the theoretical maximum flux rate. The ouabain suppressible net influx of K+ and [86Rb+] were linearly related (r = 0.73; P < 0.001). The net Na+ efflux was 1.21 times the net K+ influx. It is concluded that rumen epithelium has a large capacity for active Na+/K+ transport and that there is agreement between the concentration of [3H]ouabain binding sites in the epithelium and the ouabain suppressible rate of net [86Rb+] influx in Na+ loaded biopsies in spite of some uncertainty about the maximum turnover number of the Na+, K(+)-pump in rumen epithelium.  相似文献   

13.
Previous studies have shown that complete blockade of metabolism in embryonic chick retina causes a time-dependent increase in the release of glutamate into the extracellular space. The present study examined the cellular source of this glutamate, i.e., neuronal and/or glial. Pure cultures of retinal neurons or glia were labeled for 10 min at 37 degrees C with [3H]acetate. Retinal glia, but not retinal neurons, were found to selectively and preferentially metabolize acetate, thus producing 3H-labeled amino acids in the glial compartment. This finding provides direct evidence to substantiate findings from several other laboratories that have indirectly determined the preferential metabolism of acetate by glia by using mixed neuronal/glial populations. To study the cellular source of glutamate released during total metabolic blockade, whole retina were prelabeled with [3H]acetate plus [U-14C]glucose (to label the neuronal compartment). Total metabolic blockade was instituted with a combination of iodoacetate (IOA) plus KCN, and the release of glutamate into the medium was followed at 5, 15, and 30 min. During total energy blockade, net extracellular glutamate was not elevated at 5 min [0.17 +/- 0.02 vs. 0.12 +/- 0.01 microM for treated vs. control retina (means +/- SEM), respectively], but was increased significantly at 15 (1.2 +/- 0.26 microM) and 30 min (2.6 +/- 0.22 microM). Total [3H]glutamate in the medium during IOA/KCN treatment was unchanged at 5 min, but was increased 1.5- and threefold above basal levels at 15 and 30 min, respectively. During the time when extracellular glutamate increased, the specific activity of [3H]glutamate remained fairly constant, 731 +/- 134 and 517 +/- 82 dpm/nmol (means +/- SEM) at 15 and 30 min, respectively. In contrast, 14C-labeled glutamate in the medium did not increase during IOA/KCN treatment and paralleled basal levels. Thus, the specific activity of 14C-labeled extracellular glutamate decreased from 309 +/- 87 dpm/nmol at 15 min to 42 +/- 8 dpm/nmol at 30 min. Prior loading of the tissue with 0.5 mM trans-pyrrolidine-2,4-dicarboxylate (t-PDC), a glutamate transport inhibitor, blocked 57% of the glutamate released at 30 min of IOA/KCN exposure, suggesting that reversal of an Na+-dependent glutamate transporter was a key contributor to the appearance of extracellular glutamate during energy deprivation. The increase in extracellular [3H]glutamate, constancy of the specific activity of extracellular [3H]glutamate, decrease in the specific activity of extracellular [14C]glutamate, and attenuation of release by prior loading with t-PDC indicate that glial pools of glutamate released via reversal of the transporter contribute significantly to the rise in extracellular glutamate after metabolic inhibition in this preparation.  相似文献   

14.
The exposure of frog skeletal muscle to caffeine (3-4 mM) generates an increase of the K+ (42K+) efflux rate coefficient (kK,o) which exhibits the following characteristics. First it is promoted by the rise in cytosolic Ca2+ ([Ca2+]i), because the effect is mimicked by ionomycin (1.25 microM), a Ca2+ ionophore. Second, the inhibition of caffeine-induced Ca2+ release from the sarcoplasmic reticulum (SR) by 40 microM tetracaine significantly reduced the increase in kK,o (DeltakK,o). Third, charybdotoxin (23 nM), a blocker of the large-conductance Ca2+-dependent K+ channels (BKCa channels) reduced DeltakK,o by 22%. Fourth, apamin (10 nM), a blocker of the small-conductance Ca2+-dependent K+ channels (SKCa channels), did not affect DeltakK,o. Fifth, tolbutamide (800 microM), an inhibitor of KATP channels, reduced DeltakK,o by about 23%. Sixth, Ba2+, a blocker of most K+ channels, did not preclude the caffeine-induced DeltakK,o. Seventh, omitting Na+ from the external medium reduced DeltakK,o by about 40%. Eight, amiloride (5 mM) decreased DeltakK,o by 65%. It is concluded that the caffeine-induced rise of [Ca2+]i increases K+ efflux, through the activation of: (1) two channels (BKCa and KATP) and (2) an external Na+-dependent amiloride-sensitive process.  相似文献   

15.
The possible role of altered extracellular Ca2+ concentration ([Ca2+]o) in skeletal muscle fatigue was tested on isolated slow-twitch soleus and fast-twitch extensor digitorum longus muscles of the mouse. The following findings were made. 1) A change from the control solution (1.3 mM [Ca2+]o) to 10 mM [Ca2+]o, or to nominally Ca2+-free solutions, had little effect on tetanic force in nonfatigued muscle. 2) Almost complete restoration of tetanic force was induced by 10 mM [Ca2+]o in severely K+-depressed muscle (extracellular K+ concentration of 10-12 mM). This effect was attributed to a 5-mV reversal of the K+-induced depolarization and subsequent restoration of ability to generate action potentials (inferred by using the twitch force-stimulation strength relationship). 3) Tetanic force depressed by lowered extracellular Na+ concentration (40 mM) was further reduced with 10 mM [Ca2+]o. 4) Tetanic force loss at elevated extracellular K+ concentration (8 mM) and lowered extracellular Na+ concentration (100 mM) was partially reversed with 10 mM [Ca2+]o or markedly exacerbated with low [Ca2+]o. 5) Fatigue induced by using repeated tetani in soleus was attenuated at 10 mM [Ca2+]o (due to increased resting and evoked forces) and exacerbated at low [Ca2+]o. These combined results suggest, first, that raised [Ca2+]o protects against fatigue rather than inducing it and, second, that a considerable depletion of [Ca2+]o in the transverse tubules may contribute to fatigue.  相似文献   

16.
For better understanding of glial participation in cerebral ischemia, spectrofluorimetric analysis using the calcium indicator Fura-2AM was applied to examine the role of intracellular free Ca2+ ([Ca2+])i elevation induced by different neuroactive substances in cultured rat brain astrocytes. The activation by the general receptor agonist glutamate resulted in a biphasic cell response in [Ca2+]i. We couldn't observe N-methyl-D-aspartate-evoked [Ca2+]i response at all. Quisqualate triggered a complex [Ca2+]i response in astrocytes consisting of mobilization of Ca2+ from the intracellular stores and also Ca2+ influx from the extracellular space. Kainate elicited a markedly different Ca2+ signal an external Ca(2+)-dependent sustained [Ca2+]i rise resulting from the activation of the ionotropic glutamate receptor. According to our results two types of glutamate receptors, the quisqualate-specific metabotropic and kainate-specific ionotropic receptor, are involved in [Ca2+]i elevation in these cultures. We could monitor agonist-specific cell response to noradrenaline, serotonin, vasopressin and ATP as well in these cultured rat astrocytes.  相似文献   

17.
Whole cell voltage- and current-clamp recordings were carried out to investigate the effects of clonidine, an alpha 2-adrenoceptor agonist, in L4 and L5 dorsal root ganglion (DRG) neurons of the rat. In voltage-clamp mode, application of 20 microM clonidine reversibly reduced the inward current evoked by hyperpolarizing voltage steps. The "clonidine-sensitive current" was obtained by subtracting the current during clonidine application from the control current, and its properties were as follows. 1) It was a slowly activating inward current evoked by hyperpolarization. 2) The reversal potential in the standard extracellular solution ([K+]o = 5 mM, [Na+]o = 151 mM) was -38.3 mV, and reduction of [Na+]o shifted it to a more negative potential, whereas an increase of [K+]o shifted it to a more positive potential, indicating that the current was carried by Na+ and K+ (PNa/PK = 0.22). 3) The relationship between the chord conductance underlying the clonidine-sensitive current and voltage could be fitted by a Boltzmann equation. These results indicate that the clonidine-sensitive current corresponds to a hyperpolarization-activated current (Ih), i.e., clonidine inhibits Ih in rat DRG neurons. DRG neurons were classified as small (15.9-32.9 microns diam), medium-sized (33-42.9 microns), and large (43-63.6 microns), and 7 of 19, 24 of 25, and 22 of 22 of these types exhibited Ih with mean +/- SE clonidine-induced inhibition values of 36.1 +/- 3.5% (n = 7), 43.1 +/- 3.7% (n = 24), and 35.1 +/- 2.7% (n = 22), respectively. Clonidine application to L4 and L5 DRG neurons excised from rats the sciatic nerves of which had been transected 14-35 days previously (transected DRG neurons) also reduced Ih. In current-clamp mode, 9 of 13 intact and 4 of 6 transected medium-sized DRG neurons that exhibited Ih responded to clonidine with hyperpolarization (> 2 mV). Some medium-sized DRG neurons exhibited repetitive action potentials in response to a depolarizing current pulse, and clonidine reduced the firing discharge frequencies in 8 of 11 intact and 3 of 4 transected neurons tested. Injection of a hyperpolarizing current pulse produced time-dependent rectification in DRG neurons that exhibited Ih, and clonidine blocked this rectification in all intact and transected neurons tested. These results suggest that inhibition of Ih due to alpha 2-adrenoceptor activation contributes to modulation of DRG neuronal activity in rats. On the basis of our findings, we discuss the possible mechanisms whereby sympathetically released norepinephrine modulates the abnormal activity of DRG neuronal cell bodies after nerve injury.  相似文献   

18.
1. The effect of Na and K ions on active Na transport was studied in guinea-pig auricles by means of flame photometry. 2. The Na influx into preparations rewarmed in Tyrode's solution after cooling was estimated to be about 1.05 mmole/l fibre water - min (l.f.w.-min) or c. 8 pmole/cm2 - s. Intracellular Na ions enhanced the active Na efflux over a wide range of concentrations. A decrease in the extracellular Na concentration ([Na]o) had no major effect on the active Na efflux. 3. Extracellular K ions initiated an active Na efflux from rewarmed auricles with an elevated [Na[i over a narrow range of K concentrations ([K]o). 4. Assuming Michaelis-Menten kinetics the maximal active Na efflux activated by internal Na ions was calculated to be about 4 mmole/l.f.w. - min (30 pmole/cm2 - s). Half maximal Na efflux occurred at about 22 mmole/l.f.w. [Na]i. The maximal K-activated active - min (28 pmole/cm2 - s) and was half maximal at a [K]o of about 0.2 mM. 5. It is tentatively concluded that the maximal active Na efflux from guinea-pig atria is 3--4 times larger than the physiological flux. Under normal conditions active Na efflux in heart is mainly regulated by variations of [Na]i.  相似文献   

19.
Changes in neuronal activity and extracellular concentrations of ions were measured in rat striatum for 60-90 min after intrastriatal injection of quinolinic acid, an agonist of the N-methyl-D-aspartate receptor. The excitotoxin induced bursts of synchronous electrical activity which were accompanied by rises in [K+]e (to approximately 6 mM) and decreases in [Ca2+]e (by less than 0.1 mM); [H+]e usually increased (0.1-0.3 pH unit) after a short and small (< 0.1 pH unit) alkaline shift. The magnitude and frequency of these periodic changes decreased with time; after 90 min the amplitudes fell to 10-20% of the early values and the frequency to about one every 8 min as compared to one every 2-3 min immediately after quinolinate injection. By 90 min there was an increase in [K+]e from 3.3 mM to 4.2 mM and a decrease in [Ca2+]e from 1.34 mM to 1.30 mM. It is postulated that activation of the N-methyl-D-aspartate receptor causes disturbances in neuronal activity and ion gradients; restoration of the original ionic balances raises utilization of ATP and places an additional demand on energy-producing pathways. Increased influx of calcium into neurons may lead to an enhanced accumulation and subsequent overload of mitochondria with the cation. This, in turn, could result in dysfunction of the organelles and account for the decrease in respiration and [ATP]/[ADP] that have been observed previously in this model. The results of the present study lead to the conclusion that quinolinic acid produces early changes in activity of striatal neurons and movements of several cations which may contribute to subsequent abnormalities in energy metabolism and ultimately, cell death.  相似文献   

20.
Brain trauma is associated with acute functional impairment and neuronal injury. At present, it is unclear to what extent disturbances in ion homeostasis are involved in these changes. We used ion-selective microelectrodes to register interstitial potassium ([K+]e) and calcium ([Ca2+]e) concentrations in the brain cortex following cerebral compression contusion in the rat. The trauma was produced by dropping a 21 g weight from a height of 35 cm onto a piston that compressed the cortex 1.5 mm. Ion measurements were made in two different locations of the contused region: in the perimeter, i.e., the shear stress zone (region A), and in the center (region B). The trauma resulted in an immediate increase in [K+]e from a control level of 3 mM to a level > 60 mM in both regions, and a concomitant negative shift in DC potential. In both regions, there was a simultaneous, dramatic decrease in [Ca2+]e from a baseline of 1.1 mM to 0.3-0.1 mM. Interstitial [K+] and the DC potential normalized within 3 min after trauma. In region B, [Ca2+]e recovered to near control levels within 5 min after ictus. In region A, however, recovery of [Ca2+]e was significantly slower, with a return to near baseline values within 50 min after trauma. The prolonged lowering of [Ca2+]e in region A was associated with an inability to propagate cortical spreading depression, suggesting a profound functional disturbance. Histologic evaluation 72 h after trauma revealed that neuronal injury was confined exclusively to region A. The results indicate that compression contusion trauma produces a transient membrane depolarization associated with a pronounced cellular release of K+ and a massive Ca2+ entry into the intracellular compartment. We suggest that the acute functional impairment and the subsequent neuronal injury in region A is caused by the prolonged disturbance of cellular calcium homeostasis mediated by leaky membranes exposed to shear stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号