首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
MalK is the ATP-hydrolyzing subunit of the binding protein-dependent ATP-binding-cassette (ABC) transport system for maltose from Salmonella typhimurium. In a recent hypothesis, Glu64 and Glu94 of MalK were proposed as candidates for 'catalytic carboxylate', common to ATP- and GTP-hydrolyzing proteins [Yoshida and Amano (1995) FEBS Lett. 359, 1-5]. Substitution of both residues and, additionally, Glu74 by either glutamine or glycine and valine, respectively, had no deleterious effect on maltose transport. Thus, our data disprove the above notion.  相似文献   

3.
Ba2+ block of large conductance Ca2+-activated K+ channels was studied in patches of membrane excised from cultures of rat skeletal muscle using the patch clamp technique. Under conditions in which a blocking Ba2+ ion would dissociate to the external solution (150 mM N-methyl-D-glucamine+o, 500 mM K+i, 10 microM Ba2+i, +30 mV, and 100 microM Ca2+i to fully activate the channel), Ba2+ blocks with a mean duration of approximately 2 s occurred, on average, once every approximately 100 ms of channel open time. Of these Ba2+ blocks, 78% terminated with a single step in the current to the fully open level and 22% terminated with a transition to a subconductance level at approximately 0.26 of the fully open level (preopening) before stepping to the fully open level. Only one apparent preclosing was observed in approximately 10,000 Ba2+ blocks. Thus, the preopenings represent Ba2+-induced time-irreversible subconductance gating. The fraction of Ba2+ blocks terminating with a preopening and the duration of preopenings (exponentially distributed, mean = 0.75 ms) appeared independent of changes in [Ba2+]i or membrane potential. The fractional conductance of the preopenings increased from 0.24 at +10 mV to 0.39 at +90 mV. In contrast, the average subconductance level during normal gating in the absence of Ba2+ was independent of membrane potential, suggesting different mechanisms for preopenings and normal subconductance levels. Preopenings were also observed with 10 mM Ba2+o and no added Ba2+i. Adding K+, Rb+, or Na+ to the external solution decreased the fraction of Ba2+ blocks with preopenings, with K+ and Rb+ being more effective than Na+. These results are consistent with models in which the blocking Ba2+ ion either induces a preopening gate, and then dissociates to the external solution, or moves to a site located on the external side of the Ba2+ blocking site and acts directly as the preopening gate.  相似文献   

4.
Taicatoxin, isolated from the venom of the Australian taipan snake Oxyuranus scutellatus, has been previously regarded as a specific blocker of high threshold Ca2+ channels in heart. Here we show that taicatoxin (in contrast to a range of other Ca2+ channel blockers) interacts with apamin-sensitive, small conductance, Ca2+-activated potassium channels on both chromaffin cells and in the brain. Taicatoxin displays high affinity recognition of 125I-apamin acceptor-binding sites, present on rat synaptosomal membranes (Ki = 1.45 +/- 0.22 nM) and also specifically blocks affinity-labeling of a 33-kDa 125I-apamin-binding polypeptide on rat brain membranes. Taicatoxin (50 nM) completely blocks apamin-sensitive after-hyperpolarizing slow tail K+ currents generated in rat chromaffin cells (mean block 97 +/- 3%, n = 12) while only partially reducing total voltage-dependent Ca2+ currents (mean block 12 +/- 4%, n = 6). In view of these findings, the use of taicatoxin as a specific ligand for Ca2+ channels should now be reconsidered.  相似文献   

5.
The contribution of coagulation factors and fibrinolytic variables to the development of ischaemic arterial disease is still not clearly established. The PRIME study is a prospective cohort study of myocardial infarction in men aged 50-59 years and recruited from three MONICA field centers in France (Lille, Strasbourg and Toulouse) and the center in Northern Ireland (Belfast). Baseline examination included measurement of plasma fibrinogen, factor VII, and PAI-1 activity in over 10,500 participants. We investigated the associations of these haemostatic variables with cardiovascular risk factors, prevalent atherosclerotic disease and geographical area. Fibrinogen level increased with age, smoking, waist-to-hip ratio, LDL-cholesterol, and it decreased with educational level, leisure physical activity, alcohol intake and HDL-cholesterol. Factor VII activity increased with body mass index, waist-to-hip ratio, triglycerides. HDL- and LDL-cholesterol. PAI-1 activity increased with body mass index, waist-to-hip ratio, triglycerides, alcohol intake, smoking, and decreased with leisure physical activity. PAI-1 level was higher in diabetic subjects than in subjects without diabetes. Cardiovascular risk factors explained 8%, 9%, and 26% of the total variance in fibrinogen, factor VII, and PAI-1, respectively. Compared with participants without prevalent cardiovascular disease, those with previous myocardial infarction (n = 280), angina pectoris (n = 230), or peripheral vascular disease (n = 19) had significantly higher levels of fibrinogen. but those with stroke (n = 67) had not. PAI-1 activity showed a similar pattern of association. The odds ratio for cardiovascular disease associated with a rise of a one standard deviation in fibrinogen and PAI-1 was 1.31 (95% confidence interval: 1.20 to 1.42, p <0.001) and 1.38 (95% confidence interval: 1.27 to 1.49, p<0.001), respectively. After adjustment for cardiovascular risk factors, these associations were attenuated but remained highly significant. There was no significant association between factor VII activity and prevalent cardiovascular disease. Fibrinogen level and, to a lesser extent, factor VII and PAI-1 activity were higher in Northern Ireland than France after adjustment for the main cardiovascular risk factors. These geographical variations are consistent with the 2 to 3-fold higher incidence of myocardial infarction in Northern Ireland than France. Our results provide further epidemiological evidence for a possible role of fibrinogen and PAI-1 in the pathogenesis of coronary heart disease.  相似文献   

6.
In the nervous system of the marine mollusk Aplysia there are two protein kinase C (PKC) isoforms, the Ca2+-activated PKC Apl I and the Ca2+-independent PKC Apl II. PKC Apl I, but not PKC Apl II is activated by a short-term application of the neurotransmitter serotonin. This may be explained by the fact that purified PKC Apl II requires a higher mole percentage of phosphatidylserine to stimulate enzyme activity than does PKC Apl I. In order to understand the molecular basis for this difference, we have compared the ability of lipids to interact with the purified kinases and with regulatory domain fusion proteins derived from the kinases using a variety of assays including kinase activity, phorbol dibutyrate binding, and liposome binding. We found that a C2 domain fusion protein derived from PKC Apl I binds to lipids constitutively, while a C2 domain fusion protein derived from PKC Apl II does not. In contrast, fusion proteins containing the C1 domains of PKC Apl I and PKC Apl II showed only small differences in lipid interactions. Thus, while the presence of a C2 domain assists lipid-mediated activation of PKC Apl I, it inhibits activation of PKC Apl II.  相似文献   

7.
Stimulation of human submandibular gland cells with carbachol, inositol trisphosphate (IP3), thapsigargin, or tert-butylhydroxyquinone induced an inward current that was sensitive to external Ca2+ concentration ([Ca2+]e) and was also carried by external Na+ or Ba2+ (in a Ca2+-free medium) with amplitudes in the order Ca2+ > Ba2+ > Na+. All cation currents were blocked by La3+ and Gd3+ but not by Zn2+. The IP3-stimulated current with 10 microM 3-deoxy-3-fluoro-D-myo-inositol 1,4,5-triphosphate and 10 mM 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid in the pipette solution, showed 50% inactivation in <5 min and >5 min with 10 and 1 mM [Ca2+]e, respectively. The Na+ current was not inactivated, whereas the Ba2+ current inactivated at a slower rate. The protein kinase inhibitor, staurosporine, delayed the inactivation and increased the amplitude of the current, whereas the protein Ser/Thr phosphatase inhibitor, calyculin A, reduced the current. Thapsigargin- and tert-butylhydroxyquinone-stimulated Ca2+ currents inactivated faster. Importantly, these agents accelerated the inactivation of the IP3-stimulated current. The data demonstrate that internal Ca2+ store depletion-activated Ca2+ current (ISOC) in this salivary cell line is regulated by a Ca2+-dependent feedback mechanism involving a staurosporine-sensitive protein kinase and the intracellular Ca2+ pump. We suggest that the Ca2+ pump modulates ISOC by regulating [Ca2+]i in the region of Ca2+ influx.  相似文献   

8.
The effect of Evans blue (EB) on large-conductance Ca2+-activated K+ (BKCa) channels was investigated in cultured endothelial cells of human umbilical veins. In whole-cell configuration, EB (50 microM) reversibly increased the amplitude of K+ outward currents (IK). When the patch pipettes were filled with 10 mM EGTA, its stimulatory effect on IK was unaltered. Further application of EB in the presence of suramin, a blocker of P2-purinergic receptor, or AOPCP, an inhibitor of 5'-nucleotidase, still increased IK. However, charybdotoxin (100 nM) suppressed EB-induced increase in IK. In inside-out configuration, bath application of EB (50 microM) did not change single channel conductance but significantly increased the activity of BKCa channels. The EB-induced increase in the activity of BKCa channels was independent on internal Ca2+. EB (50 microM) shifted the activation curve of BKCa channels to less positive membrane potentials by approximately 20 mV. The change in the kinetic behavior of BKCa channels caused by EB in these cells is due to an increase in mean open time and a decrease in mean closed time. These results indicate that EB can stimulate the activity of BKCa channel in endothelial cells. This effect is unrelated to its blockade of P2-purinergic receptors or inhibition of 5'-nucleotidase. The direct stimulation of these ionic channels by EB may contribute to its effect on capillary permeability.  相似文献   

9.
We investigated changes in whole-cell currents, cell volume, and intracellular calcium concentration ([Ca2+]i) during hypotonic stimulation in whole-cell clamped cultured amphibian renal cells (A6 cells). Upon being exposed to hypotonic solution (80% osmolality), the A6 cells swelled and peaked in the first 5 min, which was followed by a progressive decrease in cell volume termed regulatory volume decrease (RVD). Following the cell swelling, there were large increases in both outward- and inward-currents, which seemed to be carried by K+ efflux and Cl- efflux, respectively. A K+ channel blocker (TEA or quinine) or a Cl- channel blocker (NPPB or SITS) significantly inhibited both currents and RVD, suggesting that the inward- and outward-currents are highly correlated with each other and essential to RVD. Hypotonic stimulation also induced a transient [Ca2+]i increase, of which the time course was essentially similar to that of the currents. When internal and external Ca2+ were deprived to eliminate the Ca2+ transient increase, whole-cell currents and RVD were strongly inhibited. On the other hand, channel blockers TEA and NPPB, which inhibited whole-cell currents and RVD, did not inhibit the [Ca2+]i increase. It is concluded that hypotonic stimulation to A6 cells first induces cell swelling, which is followed by [Ca2+]i increase that leads to the coactivation of K+ and Cl- channels. This coactivation may accelerate K+ and Cl- effluxes, resulting in RVD.  相似文献   

10.
Cloned large conductance Ca(2+)-activated K+ channels (BK or maxi-K+ channels) from Drosophila (dSlo) were expressed in Xenopus oocytes and studied in excised membrane patches with the patch-clamp technique. Both a natural variant and a mutant that eliminated a putative cyclic AMP-dependent protein kinase phosphorylation site exhibited large, slow fluctuations in open probability with time. These fluctuations, termed "wanderlust kinetics," occurred with a time course of tens of seconds to minutes and had kinetic properties inconsistent with simple gating models. Wanderlust kinetics was still observed in the presence of 5 mM caffeine or 50 nM thapsigargin, or when the Ca2+ buffering capacity of the solution was increased by the addition of 5 mM HEDTA, suggesting that the wanderlust kinetics did not arise from Ca2+ release from caffeine and thapsigargin sensitive internal stores in the excised patch. The slow changes in kinetics associated with wanderlust kinetics could be generated with a discrete-state Markov model with transitions among three or more kinetic modes with different levels of open probability. To average out the wanderlust kinetics, large amounts of data were analyzed and demonstrated up to a threefold difference in the [Ca2+]i required for an open probability of 0.5 among channels expressed from the same injected mRNA. These findings indicate that cloned dSlo channels in excised patches from Xenopus oocytes can exhibit large variability in gating properties, both within a single channel and among channels.  相似文献   

11.
Gonadal differentiation involves a complex interplay of developmental pathways. The sex determining region Y (SRY) gene plays a key role in testis determination, but its interaction with other genes is less well understood. Abnormalities of gonadal differentiation result in a range of clinical problems. 46,XY complete gonadal dysgenesis is defined by an absence of testis determination. Subjects have female external genitalia and come to clinical attention because of delayed puberty. Individuals with 46,XY partial gonadal dysgenesis usually present in the newborn period for the valuation of ambiguous genitalia. Gonadal histology always shows an abnormality of seminiferous tubule formation. A diagnosis of 46,XY true hermaphroditism is made if the gonads contain well-formed testicular and ovarian elements. Despite the pivotal role of the SRY gene in testis development, mutations of SRY are unusual in subjects with a 46,XY karyotype and abnormal gonadal development. 46,XX maleness is defined by testis determination in an individual with a 46,XX karyotype. Most affected individuals have a phenotype similar to that of Klinefelter syndrome. In contrast, subjects with 46,XX true hermaphroditism usually present with ambiguous genitalia. The majority of subjects with 46,XX maleness have Y sequences including SRY in genomic DNA. However, only rare subjects with 46,XX true hermaphroditism have translocated sequences encoding SRY. Mosaicism and chimaerism involving the Y chromosome can also be associated with abnormal gonadal development. However, the vast majority of subjects with 45,X/46,XY mosaicism have normal testes and normal male external genitalia.  相似文献   

12.
Calcium entry through voltage-gated calcium channels can activate either large- (BK) or small- (SK) conductance calcium-activated potassium channels. In hippocampal neurons, activation of BK channels underlies the falling phase of an action potential and generation of the fast afterhyperpolarization (AHP). In contrast, SK channel activation underlies generation of the slow AHP after a burst of action potentials. The source of calcium for BK channel activation is unknown, but the slow AHP is blocked by dihydropyridine antagonists, indicating that L-type calcium channels provide the calcium for activation of SK channels. It is not understood how this specialized coupling between calcium and potassium channels is achieved. Here we study channel activity in cell-attached patches from hippocampal neurons and report a unique specificity of coupling. L-type channels activate SK channels only, without activating BK channels present in the same patch. The delay between the opening of L-type channels and SK channels indicates that these channels are 50-150 nm apart. In contrast, N-type calcium channels activate BK channels only, with opening of the two channel types being nearly coincident. This temporal association indicates that N and BK channels are very close. Finally, P/Q-type calcium channels do not couple to either SK or BK channels. These data indicate an absolute segregation of coupling between channels, and illustrate the functional importance of submembrane calcium microdomains.  相似文献   

13.
The effects of the membrane permeant Ca2+ chelator BAPTA-AM on voltage-gated Na+, Ca2+, K+ (I(Na), I(Ca) I(K), respectively) and Ca2+-activated K+ (I(KCa)) currents in cultured bovine chromaffin cells were investigated using the whole-cell patch-clamp technique. Superfusion with BAPTA-AM (50 microM) induced a rapid (< 60 s) and reversible block of both I(KCa) and I(K) (approximately 50%), without affecting either I(Ca) or I(Na). Preincubation with BAPTA-AM (50 microM, 30 min) or cell loading with the nonpermeable active form of BAPTA (10 mM in the pipette solution) permanently blocked I(KCa). BAPTA-AM superfusion (50 microM) also blocked I(K) (approximately 53%) after BAPTA-loading or BAPTA-AM preincubation. In conclusion, we show a fast and reversible block of I(KCa) and I(K) by BAPTA-AM, acting directly on K+ channels before it operates as a Ca2+ chelator, in cultured bovine chromaffin cells.  相似文献   

14.
The cytokine IL-12 is proposed to play a bridging role between innate and adaptive immunity. Here we demonstrate that IL-12 binds specifically to human neutrophils. This binding leads to a transient increase in 1) intracellular free calcium due to its release from membrane-enclosed stores and its influx from extracellular medium, 2) actin polymerization, and 3) tyrosine phosphorylation. IL-12 treatment also leads to a concentration-dependent increase in reactive oxygen metabolite production. The effect of IL-12 is blocked by neutralizing Abs to IL-12. Inhibition of either calcium transient or tyrosine phosphorylation causes inhibition of reactive oxygen metabolite production. However, inhibition of actin polymerization enhances IL-12-induced oxidase activation. Our data suggest 1) a direct role for IL-12 in the activation of human neutrophils, and 2) a calcium-dependent signaling pathway for IL-12.  相似文献   

15.
Neuropeptide Y(NPY) inhibits Ca2+-activated K+ channels reversibly in vascular smooth muscle cells from the rat tail artery. NPY (200 microM) had no effect in the absence of intracellular adenosine 5'-triphosphate (ATP) and when the metabolic poison cyanide-M-chlorophenyl hydrozone (10 microM) was included in the intracellular pipette solution. NPY was also not effective when ATP was substituted by the non-hydrolysable ATP analogue adenosine 5'-[beta gamma-methylene]-triphosphate (AMP-PCP). NPY inhibited Ca2+-activated K+ channel activity when ATP was replaced by adenosine 5'-O-(3-thiotriphosphate) (ATP [gamma-S]) and the inhibition was not readily reversed upon washing. Protein kinase inhibitor (1 microM), a specific inhibitor of adenosine 3', 5'-cyclic monophosphate-dependent protein kinase, had no significant effect on the inhibitory action of NPY. The effect of NPY on single-channel activity was inhibited by the tyrosine kinase inhibitor genistein (10 microM) but not by daidzein, an inactive analogue of genistein. These observations suggest that the inhibition by NPY of Ca2+-activated K+ channels is mediated by ATP-dependent phosphorylation. The inhibitory effect of NPY was antagonized by the tyrosine kinase inhibitor genistein.  相似文献   

16.
Large conductance calcium- and voltage-sensitive K+ (MaxiK) channels share properties of voltage- and ligand-gated ion channels. In voltage-gated channels, membrane depolarization promotes the displacement of charged residues contained in the voltage sensor (S4 region) inducing gating currents and pore opening. In MaxiK channels, both voltage and micromolar internal Ca2+ favor pore opening. We demonstrate the presence of voltage sensor rearrangements with voltage (gating currents) whose movement and associated pore opening is triggered by voltage and facilitated by micromolar internal Ca2+ concentration. In contrast to other voltage-gated channels, in MaxiK channels there is charge movement at potentials where the pore is open and the total charge per channel is 4-5 elementary charges.  相似文献   

17.
The rabies virus glycoprotein molecule (G) can be divided into two parts separated by a flexible hinge: the NH2 half (site II part) containing antigenic site II up to the linear region (amino acids [aa] 253 to 275 encompassing epitope VI [aa 264]) and the COOH half (site III part) containing antigenic site III and the transmembrane and cytoplasmic domains. The structural and immunological roles of each part were investigated by cell transfection and mouse DNA-based immunization with homogeneous and chimeric G genes formed by fusion of the site II part of one genotype (GT) with the site III part of the same or another GT. Various site II-site III combinations between G genes of PV (Pasteur virus strain) rabies (GT1), Mokola (GT3), and EBL1 (European bat lyssavirus 1 [GT5]) viruses were tested. Plasmids pGPV-PV, pGMok-Mok, pGMok-PV, and pGEBL1-PV induced transient expression of correctly transported and folded antigens in neuroblastoma cells and virus-neutralizing antibodies against parental viruses in mice, whereas, pG-PVIII (site III part only) and pGPV-Mok did not. The site III part of PV (GT1) was a strong inducer of T helper cells and was very effective at presenting the site II part of various GTs. Both parts are required for correct folding and transport of chimeric G proteins which have a strong potential value for immunological studies and development of multivalent vaccines. Chimeric plasmid pGEBL1-PV broadens the spectrum of protection against European lyssavirus genotypes (GT1, GT5, and GT6).  相似文献   

18.
We investigated how Ca2+-sensitive transient outward current, Ito(Ca), is activated in rabbit ventricular myocytes in the presence of intracellular Na+ (Na+i) using the whole-cell patch-clamp technique at 36 degreesC. In cells dialysed with Na+-free solutions, the application of nicardipine (5 microM) to block L-type Ca2+ current (ICa) completely inhibited Ito(Ca). In cells dialysed with a [Na+]i>/=5 mM, however, Ito(Ca) could be observed after blockade of ICa, indicating the activity of an ICa-independent component. The amplitude of ICa-independent Ito(Ca) increased with voltage in a [Na+]i-dependent manner. The block of Ca2+ release from the sarcoplasmic reticulum by caffeine, ryanodine or thapsigargin blocked ICa-independent Ito(Ca). In Ca2+-free bath solution Ito(Ca) was completely abolished. The application of 2 mM Ni2+ or the newly synthesized compound KBR7943, a selective blocker of the reverse mode of Na+/Ca2+ exchange, or perfusion with pipette solution containing XIP (10 microM), a selective blocker of the exchanger, blocked ICa-independent Ito(Ca). From these results we conclude that, in the presence of Na+i, Ito(Ca) can be activated via Ca2+-induced Ca2+ release triggered by Na+/Ca2+ exchange operating in the reverse mode after blockade of ICa.  相似文献   

19.
Overexpression of the murine agouti gene results in obesity. The human homologue of agouti is expressed primarily in human adipocytes, and we have shown recombinant agouti protein to increase adipocyte intracellular Ca2+([Ca2+]i) and thereby stimulate lipogenesis. However, since recent data demonstrate that increasing adipocyte [Ca2+]i may also inhibit lipolysis, we have investigated the role of agouti-induced [Ca2+]i increases in regulating lipolysis in human adipocytes. Short-term (1 h) exposure to recombinant agouti (100 nM) protein had no effect on basal lipolysis, although longer term treatment (24 h) caused a 60% decrease in basal lipolysis (P<0.0001). Short-term agouti treatment totally inhibited ACTH-induced lipolysis (P<0.05). Since melanocortin receptors (MCR) are involved in some actions of agouti, we next determined whether agouti's antilipolytic effect is exerted through competitive antagonism of the ACTH receptor (MCR-2). Forskolin (1 microM), an adenylate cyclase activator, induced a 48% increase in lipolysis in human adipocytes (P<0.05); this effect was reversed by 100 nM agouti (P<005), demonstrating that the antilipolytic effect of agouti is distal to the ACTH receptor. To determine the role of [Ca2+]i in the antilipolytic effect of agouti, human adipocytes were treated with KCl or arginine vasopressin to stimulate voltage- and receptor-stimulated Ca2+ influx, respectively. Both agents caused inhibition of forskolin-induced lipolysis (P<0.005). Furthermore, agouti's antilipolytic effect was also blocked by the Ca2+ channel blocker nitrendipine. These data demonstrate that agouti exerts a potent antilipolytic effect in human adipocytes via a Ca2+-dependent mechanism. This effect, combined with agouti-induced lipogenesis, represents a coordinate control of adipocyte lipid metabolism that may contribute to an agouti-induced obesity syndrome.  相似文献   

20.
Cytosolic acidification stimulates an influx of Ca2+ which results in shedding of the two flagella of Chlamydomonas. Ca2+ influxes are also involved in the photoresponses of this alga, but it is not understood how the acidification-activated Ca2+ influx is distinguished from the Ca2+ influxes which mediate phototaxis and the photophobic response. The present study focuses on the deflagellation-inducing Ca2+ influx pathway. Influx occurs through an ion channel or transporter with low abundance or low permeability to Ca2+ (approximately 500 fmol/s/10(6) cells in 50 microM Ca2+). Ca2+ influx was potently blocked by Cd3+ (EC50 approximately 5 microM), but was insensitive to Cd2+ (Quarmby, L.M., and H.C. Hartzell. 1994. J. Cell Biol. 124:807) and organic blockers of Ca2+ channels including SKF-96365 (up to 100 microM) and flufenamic acid (up to 1 mM). Experiments with a flagella-less mutant (bald-2), isolated flagella, and a blocker of flagellar assembly (colchicine) indicated that the acidification-stimulated Ca2+ influx pathway is not localized to the flagellar membrane. The acid-stimulated influx pathway was transiently inactivated after cells shed their flagella. Inactivation did not occur in the deflagellation mutant, fa-1, although acidification-stimulated Ca2+ influx was normal. This suggests that inactivation of this pathway in wild-type cells is probably not a direct consequence of acidification nor of Ca2+ influx, but may be related to deflagellation. Recovery of deflagellation-inducing Ca2+ influx occurred within 30 min after a 30 s exposure to acid and did not require flagellar assembly. The regulation, drug sensitivity, and subcellular localization identify acidification-stimulated Ca2+ influx as a specific Ca2+ entry pathway distinct from established Ca2+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号