首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we first derive the theoretical performance of a complementary code keying (CCK) code on an additive white Gaussian noise (AWGN) channel and over a multipath channel. To derive the error performance, we use the weight and cross-correlation distributions of the CCK code for optimal and suboptimal decoding, respectively, based on union bound. In addition, we propose a RAKE receiver for a CCK modem, which is suitable for a multipath environment with a large delay spread. The RAKE receiver principle is acceptable for modest multipath because it can coherently combine multipath components to provide signal-to-noise ratio (SNR) enhancement. However, as the delay spread is larger and the data rate of systems goes higher, intersymbol interference (ISI) generated due to multipath environments are increased. To handle the increasing ISI, the CCK modem needs an equalization technique to remove the ISI, together with RAKE processing. Thus, our proposed system is based on a channel matched filter (CMF) with a decision feedback equalizer (DFE). The CMF is applied for RAKE processing, whereas the DFE structure is used for ISI cancellation. In our system, ISI is calculated and removed by using a decoded CCK codeword.  相似文献   

2.
A symbol decision feedback equalization (DFE) technique is developed for demodulating complementary code keying (CCK) signals. The efficacy of the proposed receiver is demonstrated on the physical layer (PHY) specified in the IEEE 802.11b wireless local area network (WLAN) standard. Packet error rate (PER) performance is compared with that of the conventional RAKE receiver. The proposed receiver structure and its low complexity variations demonstrate significant performance advantages over the RAKE receiver, especially in severe multipath channels. While a large delay spread can limit the performance of two low-complexity variations discussed here, performance of the optimal symbol DFE receiver is not limited by delay spread as long as the channel signal-to-noise ratio (SNR) is sufficiently high.  相似文献   

3.
An adaptive multiuser receiver for CDMA systems   总被引:8,自引:0,他引:8  
A new real-time, digital adaptive multiuser receiver structure is proposed for the uplink in a mobile communications system employing code division multiple access (CDMA). The receiver efficiently implements the decorrelating detector of Lupas and Verdu (1989) and can be adapted to incorporate decision feedback to further improve the detector performance. While the basic receiver design is presented for synchronous CDMA over AWGN channels, experimental evaluation of the receiver for the asynchronous case verifies its robustness for cases when the relative user delays are small compared to the symbol duration as in microcellular scenarios. An efficient decorrelating RAKE combiner for frequency-selective multipath channels is also proposed and analyzed. Performance evaluation of the detector via computer simulation scenarios is conducted in support of analytical results to substantiate its potential for real-time operation  相似文献   

4.
An ultra-wide bandwidth (UWB) signal propagation experiment is performed in a typical modern laboratory/office building. The bandwidth of the signal used in this experiment is in excess of 1 GHz, which results in a differential path delay resolution of less than a nanosecond, without special processing. Based on the experimental results, a characterization of the propagation channel from a communications theoretic view point is described, and its implications for the design of a UWB radio receiver are presented. Robustness of the UWB signal to multipath fading is quantified through histograms and cumulative distributions. The all RAKE (ARAKE) receiver and maximum-energy-capture selective RAKE (SRAKE) receiver are introduced. The ARAKE receiver serves as the best case (bench mark) for RAKE receiver design and lower bounds the performance degradation caused by multipath. Multipath components of measured waveforms are detected using a maximum-likelihood detector. Energy capture as a function of the number of single-path signal correlators used in UWB SRAKE receiver provides a complexity versus performance tradeoff. Bit-error-probability performance of a UWB SRAKE receiver, based on measured channels, is given as a function of the signal-to-noise ratio and the number of correlators implemented in the receiver.  相似文献   

5.
We develop an analytical framework to quantify the effects of the spreading bandwidth (BW) on spread spectrum systems operating in dense multipath environments in terms of the receiver performance, the receiver complexity, and the multipath channel parameters. The focus of the paper is to characterize the symbol error probability (SEP) performance of a RAKE receiver tracking the L strongest multipath components in wide-sense stationary uncorrelated scattering (WSSUS) Gaussian channels with frequency-selective fading. Analytical SEP expressions of the RAKE receiver are derived in terms of the number of combined paths, the spreading BW and the multipath spread of the channel. The proposed problem is made analytically tractable by transforming the physical RAKE paths, which are correlated and ordered, into the domain of a “virtual RAKE” receiver with independent virtual paths. This results in a simple derivation of the SEP for a given spreading BW and an arbitrary number of combined paths  相似文献   

6.
We consider a coded multiple-input multiple-output (MIMO) DS-CDMA system using layered space-time transmission in multipath wireless channels, where space-time signals from multiple antennas of multiple users propagate through rich scattering multipath fading. We propose a receiver employing iterative joint detection and decoding with a reduced-complexity detector using linear minimum mean squared error filtering with a priori information and parallel soft-input soft-output (SISO) decoders. Computer simulation results show that the proposed receiver for multi-user MIMO transmission provides high-spectral efficiency and performance approaching to single-user bound. Furthermore, the reduced-complexity receiver outperforms an iterative soft decision-directed maximal ratio combining (DD-MRC) receiver, RAKE receiver as well as a conventional non-iterative receiver.  相似文献   

7.
Proposes a suboptimal low-complexity multiuser receiver for synchronous CDMA frequency-selective Rayleigh fading channels. In contrast to the conventional RAKE receiver, which suffers from near-far effects due to channel fading, the proposed multiuser receiver is shown to alleviate the near-far problem while preserving multipath diversity gain. This is demonstrated by comparing the symbol error probability and asymptotic multiuser efficiency of the proposed multiuser detector and RAKE receiver  相似文献   

8.
A decision feedback equalizer with time-reversal structure   总被引:1,自引:0,他引:1  
This work describes the use of a receiver with a time-reversal structure for low-complexity decision feedback equalization of slowly fading dispersive indoor radio channels. Time-reversal is done by storing each block of received signal samples in a buffer and reversing the sequential order of the signal samples in time prior to equalization. As a result, the equivalent channel impulse response as seen by the equalizer is a time-reverse of the actual channel impulse response. Selective time-reversal operation, therefore, allows a decision feedback equalizer (DFE) with a small number of forward filter taps to perform equally well for both minimum-phase and maximum-phase channel characteristics. The author evaluates the theoretical performance bounds for such a receiver and quantifies the possible performance improvement for discrete multipath channels with Rayleigh fading statistics. Two extreme cases of DFE examples are considered: an infinite-length DFE; and a DFE with a single forward filter tap. Optimum burst and symbol timing recovery is addressed and several practical schemes are suggested. Simulation results are presented. The combined use of equalization and diversity reception is considered  相似文献   

9.
Single‐carrier frequency division multiple access (SC‐FDMA) systems with space frequency block coding (SFBC) transmissions achieve both spatial and frequency diversity gains in wireless communications. However, SFBC SC‐FDMA schemes using linear detectors suffer from severe performance deterioration because of noise enhancement propagation and additive noise presence in the detected output. Both issues are similar to inter‐symbol‐interference (ISI). Traditionally, SC‐FDMA system decision feedback equalizer (DFE) is often used to eliminate ISI caused by multipath propagation. This article proposes frequency domain turbo equalization based on nonlinear multiuser detection for uplink SFBC SC‐FDMA transmission systems. The presented iterative receiver performs equalization with soft decisions feedback for ISI mitigation. Its coefficients are derived using minimum mean squared error criteria. The receiver configuration study is Alamouti's SFBC with two transmit and two receive antennas. New receiver approach is compared with the recently proposed suboptimal linear detector for SFBC SC‐FDMA systems. Simulation results confirm that the performance of the proposed iterative detection outperforms conventional detection techniques. After a few iterations, bit‐error‐rate performance of the proposed receiver design is closely to the matched filter bound. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
给出一种可以用于高速数字接收的特殊的判决反馈均衡器结构。为减少FIR内多径传播影响到ⅡR内的多径响应,而将部分ⅡR提前于FIR,以得到更快的系数收敛速度。在此基础上的数据仿真,比较了提前结构同普通结构的性能差异,验证了该结构可以使均衡器在严重畸变的信道条件下得到更快的收敛速度。最后,介绍了提前结构的最新的高清晰度电视8VSB接收机中的应用。  相似文献   

11.
Multipath fading severely limits the performances of conventional code division multiple-access (CDMA) systems. Since every signal passes through an independent frequency-selective fading channel, even modest cross-correlations among signature sequences may induce severe near-far effects in a central multiuser receiver. This paper presents a systematic approach to the detection problem in CDMA frequency-selective fading channels and proposes a low complexity linear multiuser receiver, which eliminates fading induced near-far problem.We initially analyze an optimal multiuser detector, consisting of a bank of RAKE filters followed by a dynamic programming algorithm and evaluate its performance through error probability bounds. The concepts of error sequence decomposition and asymptotic multiuser efficiency, used to characterize the optimal receiver performance, are extended to multipath fading channels.The complexity of the optimal detector motivates the work on a near-far resistant, low complexity decorrelating multiuser detector, which exploits multipath diversity by using a multipath decorrelating filter followed by maximal-ratio combining. Analytic expressions for error probability and asymptotic multiuser efficiency of the suboptimal receiver are derived that include the effects of multipath fading, multiple-access interference and signature sequences correlation on the receiver's performance.The results indicate that multiuser detectors not only alleviate the near-far problem but approach single-user RAKE performance, while preserving the multipath diversity gain. In interference-limited scenarios multiuser receivers significantly outperform the RAKE receiver.This paper was presented in part at the Twenty-Sixth Annual Conference on Information Sciences and Systems, Princeton, NJ, March 1992 and MILCOM'92, San Diego, CA, October 1992. This work was performed while author was with the Department of Electrical and Computer Engineering, Northeastern University, Boston, USA.  相似文献   

12.
Spread spectrum (SS) multiple access techniques have been proposed for third generation broadband wireless access. We develop an analytical framework to quantify the effects of spreading bandwidth on SS systems operating in dense multipath environments in terms of the receiver performance, receiver complexity, and multipath channel parameters. In particular, we consider wide-sense stationary uncorrelated scattering (WSSUS) Gaussian channels with frequency-selective fading. The focus of the paper is to characterize the combined signal of the RAKE receiver fingers tracking the strongest multipath components. Closed form expressions for the mean and the variance of the total RAKE receiver output signal-to-noise ratio (SNR) are derived in terms of the number of RAKE fingers, spreading bandwidth, and multipath spread of the channel. The proposed problem is made analytically tractable by transforming the physical RAKE paths into the virtual path domain. A representative result indicates that for SS systems with 5 MHz signal bandwidth operating in a channel with constant power delay profile having 5 μs spread, the average SNR gain from increasing the number of RAKE fingers from one to three is 3.8 dB and from three to five is 1.5 dB. Furthermore, the reduction in the variation of SNR is 1.1 dB and 0.4 dB for the same increments in the number of fingers  相似文献   

13.
Iterative decision feedback equalisation of linearly precoded OFDM systems   总被引:1,自引:0,他引:1  
An iterative extension of the decision feedback equaliser (DFE) receiver for linearly precoded OFDM is proposed, which improves the performance significantly, but requires a Cholesky factorisation for each iteration every time the channel changes. Next, a lower complexity form for Hadamard precoded systems is proposed, which requires just one Cholesky factorisation per OFDM symbol, with no loss in performance  相似文献   

14.
This paper examines the performance of a multicarrier CDMA system in a Rayleigh fading channel without a RAKE receiver. Since the multicarrier technique is a diversity reception technique used in the frequency domain, the signal is transmitted at different frequency bands and undergoes different fading. The superimposed signal of the multipath components after going through the mobile channel will be processed by an Fourier Transform to enter the frequency domain, where the time delays in various paths are converted to the phase shifts in the compound signal. In this paper, we use sounding bits to extract the characteristics of the mobile channel and to partly remove the multipath effect. From the simulation, it is found that the multicarrier technique is simpler than the technique used in the single carrier system with a RAKE receiver while producing a better performance than that of the RAKE receiver.  相似文献   

15.
在多径衰落信道上FD/SSMA系统的性能分析   总被引:3,自引:1,他引:2  
多载波频率分集扩展频谱码分多址系统是一种基于多载波传播,与直接序列扩展频谱码分多址系统存在时间-频率对偶关系的扩频多址通信方案。在多径传输信道下,基于FD/SSMA信号的锐自相关和低互相关特性,本文提出了FD/SSMA系统可以采用路径分集接收的方案。分析和模拟计算表明,在多径衰落信道下,采用路径分集方案时FD/SSMA系统的性能将得到明显的改善。  相似文献   

16.
For unknown mobile radio channels with severe intersymbol interference (ISI), a maximum likelihood sequence estimator, such as a decision feedback equalizer (DFE) having both feedforward and feedback filters, needs to handle both precursors and postcursors. Consequently, such an equalizer is too complex to be practical. This paper presents a new reduced-state, soft decision feedback Viterbi equalizer (RSSDFVE) with a channel estimator and predictor. The RSSDFVE uses maximum likelihood sequence estimation (MLSE) to handle the precursors and truncates the overall postcursors with the soft decision of the MLSE to reduce the implementation complexity. A multiray fading channel model with a Doppler frequency shift is used in the simulation. For fast convergence, a channel estimator with fast start-up is proposed. The channel estimator obtains the sampled channel impulse response (CIR) from the training sequence and updates the RSSDFVE during the bursts in order to track changes of the fading channel. Simulation results show the RSSDFVE has nearly the same performance as the MLSE for time-invariant multipath fading channels and better performance than the DFE for time-variant multipath fading channels with less implementation complexity than the MLSE. The fast start-up (FS) channel estimator gives faster convergence than a Kalman channel estimator. The proposed RSSDFVE retains the MLSE structure to obtain good performance and only uses soft decisions to subtract the postcursor interference. It provides the best tradeoff between complexity and performance of any Viterbi equalizers  相似文献   

17.
We study an improved receiver with iterative channel estimation and decoding for wireless multipath channels with RAKE reception. To keep the complexity low, iterative channel estimation is done on the equivalent channel at the RAKE output. Output after Turbo decoding iteration(s) is processed to yield a better channel estimate.  相似文献   

18.
该文给出一种工作于强窄带干扰(NBI)多径衰落信道中DS/CDMA系统盲多用户检测接收机模型。它具有RAKE接收机的基本结构,在每一条并行支路中利用MMSE准则跟踪各路径信号。因此具有抗多径衰落,同时抑制NBI和多址接入干扰(MAI)的能力。模拟结果证明,它的性能优于未考虑NBI抑制的多用户检测接收机。  相似文献   

19.
As wireless data rate requirements increase, multipath delay spread becomes an increasingly significant limitation on the performance of wireless systems. Techniques such as RAKE reception combat time dispersion by combining multipath components. Alternative implementations of RAKE receivers isolate the strongest multipath components and then shift each component to a common timing reference. The optimal timing reference in frequency-selective fading channels remains an open problem. This paper examines the impact pulse shaping and multipath delay spread on both signal-to-noise ratio (SNR) and bit-error rate performance. The receiver being considered achieves symbol synchronization to the strongest multipath component. The performance when synchronization is achieved based on the first multipath component arrival is also found and used to illustrate performance differences. Multipath delay distributions used on the performance calculations are derived from indoor measurements. Pulse shapes considered in the analysis include root-raised cosine, raised cosine, and Gaussian filters. SNR losses are shown to range between 1-6 dB for bit rates of 10 Mb/s. Results show that synchronization of the receiver to the strongest multipath component gives a 1-3 dB advantage over synchronization to the first arriving multipath component.  相似文献   

20.
The performance of a 49-QPRS, 90 Mbit/s digital radio receiver equipped with a decision feedback equalizer (DFE) to counter multipath fading is investigated via computer simulation. The simulation includes the transmitted data, multipath fade model, receiver model, and DFE. The results indicate that a DFE equipped with five forward and five feedback taps can adequately compensate a 40 dB minimum-phase fade anywhere in the receiver passband. The study is extended to other receiver configurations including the use of space diversity and/or slope equalizers and the use of a transversal equalizer (TE) with the same delay-span in place of the DFE. The results indicate that the DFE equipped receiver outperforms the TE receiver and that still better performance may be achieved using a combination of space diversity and DFE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号