共查询到19条相似文献,搜索用时 62 毫秒
1.
基于单类SVM的遥感图像目标检测 总被引:4,自引:0,他引:4
传统支持向量机方法在正负样本不对称的情况下对遥感图像的目标检测存在一定的误检率,文章将单类SVM方法引入此类目标检测过程中。实验表明单类SVM在牺牲少量泛化性的同时能有效地降低误检率,并提高检测速度。 相似文献
2.
:传统的航天器目标自动识别方法识别精准度差,为了解决这一问题,基于改进区域分割遥感图像研究了一种新的航天器目标自动识别方法,通过人工排查的方式来追踪航天器所提供的位置信息,并建立三角形立体体系,提取出航天器所追踪的目标和航天器之间的位置关系,实现航天器目标检测,分别针对复杂场景和运动场景对目标进行识别,引用击穿识别方法,基于遗传算法以及变换算法,实现了在复杂的自然遥感图像中能够识别多种目标,但是对于残缺和不完整的目标识别性差,因此又在方法中引入了自动学习智能识别算法,解决了在遥感图像中残缺不完整的目标识别效果差的问题。设定对比实验,结果表明,相较于传统方法,基于改进区域分割遥感图像的航天器目标自动识别方法识别准确率提高了15.23%。 相似文献
3.
4.
5.
数据融合利用多传感器的信息,克服了单一传感器信息不完整、不精确、不确定的缺点,因此广泛应用于目标识别中,该文提出了一种基于模糊融合的遥感图像目标识别的新方法。首先在单源图像上提取可疑目标,然后根据目标在不同类型图像上的成像特点,选择合适的目标特征,充分考虑到各特征的重要程度,把模糊隶属度函数和模糊密度结合起来,最后利用特征层模糊融合对目标的身份进行判定。此方法应用在实际目标的识别中,取得了很好的效果。 相似文献
6.
7.
在遥感图像中,目标往往位于复杂的地物背景中,包括不同类型的植被、土地覆盖、建筑物等。上述复杂的地物背景对目标识别造成了困难。为了精准识别遥感图像目标,提出一种卷积神经网络下遥感图像目标识别算法。将暗通道原理和双边滤波算法有效结合,对遥感图像展开增强处理。统计分析遥感图像目标尺度范围,通过训练和测试卷积神经网络,得到最佳目标感兴趣区域尺度。确定目标感兴趣区域最佳尺度后,构建基于卷积神经网络的遥感图像目标识别架构,完成遥感图像目标识别。通过实验分析证明,采用所提算法可以有效提升遥感图像增强效果,具有较好的遥感图像目标识别性能。 相似文献
8.
9.
用于遥感图像人造目标识别的三维建模方法研究 总被引:2,自引:0,他引:2
该文研究了用于遥感图像人造地物目标识别的三维建模方法,文中分析了识别任务的特点,比较了一般的建模方法,介绍了一种基于广义锥思想的几何表示方法,并利用面向对象的技术来表示模型内部数据及其操作。 相似文献
10.
11.
针对高光谱遥感图像数据量大、维数高、数据之间冗余量大的特点,提出一种基于决策边界特征提取(Decision Bounda-ry Feature Extraction,DBFE)的SVM高光谱遥感图像分类算法。首先采用DBFE对高光谱遥感图像进行特征提取,消除特征之间相关性,并降低特征维数,然后采用GA对SVM参数进行优化,找到最优分类模型参数,最后采用最优分类模型对待分类的高光谱遥感图像进行分类。仿真结果表明,高光谱遥感图像分类算法提高了高光谱遥感图像分类的效率和分类正确率,说明分类方法是有效、可行的。 相似文献
12.
基于SVM的遥感图像自动分类研究 总被引:4,自引:0,他引:4
遥感图像具有信息大、灰度级大等特点,传统简单组合特征出现特征冗余、维数高等缺陷,造成图像分类精度差.为提高分类的准确性,提出一种多目标优化人工蜂群算法的遥感图像自动分类算法(ABC-SVM).首先提取遥感图像的颜色、纹理特征,然后采用人工蜂群算法对特征进行选择和优化,最后采用支持向量机对优化特征进行训练,建立遥感图像自动分类模型.仿真结果表明,ABC-SVM克服了传统组合特征算法的缺陷,提高了遥感图像分类准确率,加快分类速度,可以满足遥感图像分类的实时性要求. 相似文献
13.
遥感技术是目前用于研究地球矿产资源与能源的重要技术手段,遥感图像分类在遥感技术应用中起着关键作用。支持向量机(Support Vector Machines,SVM)是基于VC维(Vapnik-Chervonenkis Dimension)理论和结构风险最小化原理的机器学习方法,已被广泛应用于实际的遥感影像分类中。 对 国内外学者对此做的大量研究 成果进行了系统的总结。对基于支持向量机的遥感图像分类方法进行了层次性梳理,不但纵向分析和比较了每类方法的原理及优缺点,而且对各类方法进行了横向比较和分析,较为系统和完整地概括了基于支持向量机的遥感影像分类方法的研究现状。最后指出了支持向量机算法应用于遥感图像分类的未来发展方向。 相似文献
14.
SVM在多源遥感图像分类中的应用研究 总被引:7,自引:1,他引:7
在利用遥感图像进行土地利用/覆盖分类过程中,可采用以下两种途径来提高分类精度:一是通过增加有利于分类的数据源,引入地理辅助数据和归一化植被指数(NDVI)来进行多源信息融合;二是选择更好的分类方法,例如支持向量机(SVM)学习方法,由于该方法克服了最大似然法和神经网络的弱点,非常适合高维、复杂的小样本多源数据的分类。为了提高多源遥感图像分类的精度,还研究了支持向量机在遥感图像分类中模型的选择,包括多类模型和核函数的选择。分类结果表明,支持向量机比传统的分类方法具有更高的精度,尤其是基于径向基核函数和一对一多类方法的支持向量机模型更适合多源遥感图像分类,因此,基于支持向量机的多源土地利用/覆盖分类能大大提高分类精度。 相似文献
15.
16.
提出了一种新型的具有良好特性的支持向量机--全间隔自适应模糊支持向量机(TAFSVM),并提出一种新的遗传算法--智能遗传算法(IGA)来设计一个TAFSVM分类器,称为ETAFSVM,同时优化高光谱遥感图像自动波段选择和TAFSVM参数集,并且结合5-fold交叉验证来确定其泛化能力,最后将ETAFSVM应用于高光谱遥感图像数据.通过先进行自适应波段选择后再用径向基神经网络分类器、K-最近邻分类器和标准支持向量机等3种方法进行全部分类精度比较,以及与这3种方法直接进行类别分类精度和平均分类精度比较,其结果表明运用ETAFSVM不仅可以自动进行波段选择,而且分类精度较高,对Hughes现象敏感性较低,是进行高光谱遥感图像分类的一种有效方法. 相似文献
17.
基于遗传算法的支撑向量机的特征选取 总被引:1,自引:0,他引:1
提出了一种支撑向量机(SVM)的特征提取方法,该方法使得所提取的特征向量能最小化SVM推广性的界,同时设计了一种有效的遗传算法来实现该方法。模拟数据和心电信号等识别问题的实验结果验证了该方法的有效性。 相似文献
18.
提出了一种基于遗传算法优化支持向量机的故障诊断模型.它利用遗传算法对支持向量机同时对传统的时域特征参量子集和核参数同时优化,以达到选择最优的设备故障主导特征参数组合的目的,实现对机器不同类型故障的识别.对齿轮故障诊断的结果表明它有效提高了多分类支持向量机的故障分类准确性. 相似文献