首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The correlation of antibody responses (serum rotavirus IgA and neutralizing antibody to serotype G1-G4 human rotaviruses and rhesus rotavirus [RRV]) in a reassortant rotavirus vaccine trial with protection against rotavirus infection or disease was investigated. Most subjects administered 4 x 10(5) pfu of either the serotype G1 monovalent or serotype G1-G4 tetravalent vaccine seroconverted for at least one of the six antibodies (85% and 91%, respectively). However, fewer than one-third seroconverted to any prototype G1-G4 human rotavirus. Analyses of covariance indicated that higher prevaccination neutralizing antibody titers negatively affected postvaccination titers. Significant relationships were found between several postvaccination rotavirus antibody titers and protection, and serotype-specific correlates of protection were identified between anti-Wa titers and G1 illnesses (P = .03) and between anti-RRV titers and G3 illnesses (P < .001). Overall, however, serotype-specific immunity was no more significant than heterotypic immunity, and no specific titer of any antibody analyzed was a reliable indicator of protection.  相似文献   

2.
Worldwide trials of rotavirus vaccines are currently in progress, but the basis of cross-reactive immunity between rotavirus serotypes is yet to be elucidated. The involvement of the outer capsid proteins, VP7 and VP4, in the production of cross-reactive neutralizing antibody (N-Ab) is unclear, and may be important for the success of animal rotavirus-based candidate vaccines that lack a VP4 of human rotavirus origin. In this study, VP7- and VP4-specific N-Ab was assayed in sera from children experiencing primary (27 children) and/or secondary (14 children) rotavirus infections using human-animal reassortant strains. These reassortants contained genes encoding the major G- and P-types found in human infection, including G1, 2, 3, and 4; or P1A[8], 1B[4], and 2[6]. After primary infection, the N-Ab response to VP7 was generally serotype-specific, whereas the response to VP4 was heterotypic. After reinfection (with the same or different serotypes) there was a significant increase (P=0.0313) in the number of VP7 serotypes seroconverted against with no broadening of cross-reactivity to VP4. Increases in homotypic N-Ab titer, following both primary and secondary infection, were greater against VP7 than VP4, with the seroconversion against VP7 being significantly greater upon reinfection than following primary infection (P=0.0280). In summary, heterotypic N-Ab produced following primary infection appears to be primarily against VP4. However, upon reinfection, VP7 becomes increasingly immunodominant both in terms of cross-reactive N-Ab production and increases in N-Ab titer.  相似文献   

3.
DNA vaccines are usually given by intramuscular injection or by gene gun delivery of DNA-coated particles into the epidermis. Induction of mucosal immunity by targeting DNA vaccines to mucosal surfaces may offer advantages, and an oral vaccine could be effective for controlling infections of the gut mucosa. In a murine model, we obtained protective immune responses after oral immunization with a rotavirus VP6 DNA vaccine encapsulated in poly(lactide-coglycolide) (PLG) microparticles. One dose of vaccine given to BALB/c mice elicited both rotavirus-specific serum antibodies and intestinal immunoglobulin A (IgA). After challenge at 12 weeks postimmunization with homologous rotavirus, fecal rotavirus antigen was significantly reduced compared with controls. Earlier and higher fecal rotavirus-specific IgA responses were noted during the peak period of viral shedding, suggesting that protection was due to specific mucosal immune responses. The results that we obtained with PLG-encapsulated rotavirus VP6 DNA are the first to demonstrate protection against an infectious agent elicited after oral administration of a DNA vaccine.  相似文献   

4.
5.
We have evaluated the immunogenicity and protective efficacy of rotavirus subunit vaccines administered by mucosal routes. Virus-like particles (VLPs) produced by self-assembly of individual rotavirus structural proteins coexpressed by baculovirus recombinants in insect cells were the subunit vaccine tested. We first compared the immunogenicities and protective efficacies of VLPs containing VP2 and VP6 (2/6-VLPs) and G3 2/6/7-VLPs mixed with cholera toxin and administered by oral and intranasal routes in the adult mouse model of rotavirus infection. VLPs administered orally induced serum antibody and intestinal immunoglobulin A (IgA) and IgG. The highest oral dose (100 microg) of VLPs induced protection from rotavirus challenge (> or = 50% reduction in virus shedding) in 50% of the mice. VLPs administered intranasally induced higher serum and intestinal antibody responses than VLPs administered orally. All mice receiving VLPs intranasally were protected from challenge; no virus was shed after challenge. Since there was no difference in immunogenicity or protective efficacy between 2/6- and 2/6/7-VLPs, protection was achieved without inclusion of the neutralization antigens VP7 and VP4. We also tested the immunogenicities and protective efficacies of 2/6-VLPs administered intranasally without the addition of cholera toxin. 2/6-VLPs administered intranasally without cholera toxin induced lower serum and intestinal antibody titers than 2/6-VLPs administered with cholera toxin. The highest dose (100 microg) of 2/6-VLPs administered intranasally without cholera toxin resulted in a mean reduction in shedding of 38%. When cholera toxin was added, higher levels of protection were achieved with 10-fold less immunogen. VLPs administered mucosally offer a promising, safe, nonreplicating vaccine for rotavirus.  相似文献   

6.
We recently reported that epidermal immunization using the PowderJet particle delivery device with plasmid vector pcDNA1/EDIM6 encoding rotavirus VP6 of murine strain EDIM induced high levels of serum rotavirus IgG but failed to protect mice against EDIM infection (Choi, A. H., Knowlton, D. R., McNeal, M. M., and Ward, R. L. (1997) Virology 232, 129-138.). This was extended to determine whether pcDNA1/EDIM4 or pcDNA1/EDIM7, which encode either rotavirus VP4 or VP7, the rotavirus neutralization proteins, could also induce rotavirus-specific antibody responses and if these responses resulted in protection. Titers of rotavirus serum IgG increased with the first dose in mice immunized with pcDNA1/EDIM7, but little or no serum rotavirus IgG was detected in mice immunized with pcDNA1/EDIM4. In vitro assays with these plasmids in rabbit reticulocyte lysates showed that VP4 was expressed but the amount was considerably lower than VP6 or VP7. To improve expression of VP4 and induction of rotavirus-specific humoral responses, the coding region of VP4 was cloned into the high-expression plasmid WRG7054 as a fusion protein containing the 22-amino-acid secretory signal peptide of tissue plasminogen activator (tPA) at its N terminus. In vitro expression of tPA::VP4 was significantly higher than unmodified VP4, and mice inoculated with WRG7054/EDIM4 generated high titers of rotavirus IgG. The coding sequence of VP7 without the first 162 nucleotides was also cloned into WRG7054, but no difference was observed between titers of serum rotavirus IgG in mice immunized with this plasmid (WRG7054/EDIM7Delta1-162) and pcDNA1/EDIM7. The rotavirus-specific IgG titers in all immune sera were predominantly IgG1 indicating induction of Th 2-type responses. None of the mice immunized with any of the VP4 or VP7 plasmids developed serum or fecal rotavirus IgA or neutralizing antibody to EDIM. When immunized mice were challenged with EDIM virus, there was no significant reduction in viral shedding relative to unimmunized controls. Therefore epidermal immunization with VP4 or VP7 alone elicited rotavirus IgG responses but did not protect against homologous rotavirus challenge.  相似文献   

7.
8.
Most malariologists believe that optimal malaria vaccines will induce protective immune responses against different stages of the parasite's life cycle. A multiple antigen peptide (MAP) vaccine based on the Plasmodium yoelii circumsporozoite protein (PyCSP) protects mice against sporozoite challenge by inducing antibodies that prevent sporozoites from invading hepatocytes. A purified recombinant protein vaccine based on the P. yoelii merozoite surface protein-1 (PyMSP-1) protects mice against challenge with infected erythrocytes, presumably by inducing antibodies against the erythrocytic stage of the parasite. We now report studies designed to determine if the PyMSP-1 vaccine protects against challenge with sporozoites, the stage encountered in the field, and if immunization with a combination of the PyCSP and PyMSP-1 vaccines provides additive or synergistic protection against sporozoite challenge. In two experiments, using TiterMax or Ribi R-700 as adjuvant, 3 of 19 mice immunized with the PyMSP-1 vaccine were completely protected against sporozoite challenge. The remaining mice had significantly delayed onset and lower levels of peak parasitemia than did control mice (11.1 +/- 2.8% vs. 36.7 +/- 1.6% in experiment #2, P < 0.01). Immunization with the combination vaccine reduced by approximately 50% the level of antibodies induced to PyCSP and PyMSP-1, as compared to that induced by the individual components. However, in two experiments, there was evidence of additive protection. Six of 19 (31.6%) immunized with the PyCSP vaccine, 3 of 19 (15.8%) immunized with the PyMSP-1 vaccine, and 10 of 19 (52.6%) immunized with the combination were completely protected against sporozoit challenge. This modest increase in protection in the combination group may be a reflection of additive anti-PyCSP and anti-PyMSP-1 immunity, since mice in the combination group had diminished levels of antibodies to each components. These studies indicate that considerable work may be required to optimize the construction, delivery, and assessment of multi-stage malaria vaccines.  相似文献   

9.
Live-attenuated retroviruses have been shown to be effective retroviral vaccines, but currently little is known regarding the mechanisms of protection. In the present studies, we used Friend virus as a model to analyze characteristics of a live-attenuated vaccine in protection against virus-induced disease. Highly susceptible mice were immunized with nonpathogenic Friend murine leukemia helper virus (F-MuLV), which replicates poorly in adult mice. Further attenuation of the vaccine virus was achieved by crossing the Fv-1 genetic resistance barrier. The minimum dose of vaccine virus required to protect 100% of the mice against challenge with pathogenic Friend virus complex was determined to be 10(3) focus-forming units of attenuated virus. Live vaccine virus was necessary for induction of immunity, since inactivated F-MuLV did not induce protection. To determine whether immune cells mediated protection, spleen cells from vaccinated donor mice were adoptively transferred into syngeneic recipients. The results indicated that immune mechanisms rather than viral interference mediated protection.  相似文献   

10.
The vervet monkey rotavirus SA11, a prototype strain of group A rotaviruses, has been shown to possess VP7 serotype 3 specificity but its neutralization specificity with regard to the other outer capsid protein VP4 has not been elucidated. We thus determined its VP4 specificity by two-way cross-neutralization with guinea pig antiserum prepared with a single gene substitution reassortant that had only the VP4-encoding gene from the simian rotavirus SA11 strain and remaining ten genes from human rotavirus DS-1 strain (G serotype 2). The SA11 VP4 was related antigenically in a one-way fashion to rhesus monkey rotavirus MMU18006 VP4 (a P5B strain) and marginally to human and canine rotavirus VP4s with P serotype 5A specificity. In addition, the SA11 VP4 was shown to be distinct antigenically from those of other known P serotypes (1-4, and 6-11) as well as those of uncharacterized equine, lapine, and avian rotavirus strains. The SA11 VP4 is thus proposed for classification as a P5B serotype.  相似文献   

11.
Dot and Northern blot hybridization assays were used to analyze field strains of group A bovine rotaviruses (BRVs) by using nucleic acid probes representing P and G type specificities. The probes were prepared by polymerase chain reaction amplification of hyperdivergent regions of the cloned VP4 (nucleotides 211 to 686) and VP7 (nucleotides 51 to 392) genes from four serotypically distinct (in P or G types) strains of rotaviruses: NCDV (G6, P1), IND (G6, P5), 69M (G8, P10), and Cr (G10, P11). The P and G type cDNA probes were radiolabeled with [32P]dCTP and hybridized with RNA extracted from reference cell culture-passaged rotavirus strains or the field samples. The field samples were obtained from young diarrheic calves from Ohio, Nebraska, Washington State, and Canada. The cDNA probes were specific for their respective G or P types on the basis of analysis of known P and G type reference strains. The G typing analysis of 102 field samples revealed that 36.3% (37 of 102) were G6, 2.9% (3 of 102) were G8, 12.7% (13 of 102) were G10, and 23.5% (24 of 102) were untypeable. The P typing results for 93 samples indicated that 2.2% (2 of 93) were P1 (NCDV-like), 20.4% (19 of 93) were P5 (UK-like), 9.3% (10 of 93) were P11 (B223-like), and 40.8% (38 of 93) were untypeable. This is the first report of the identification among BRV strains in North America of a G type other than G6 or G10. Our report further confirms that G6, P5 rotaviruses are predominant among the BRV field strains that we examined, and the P types of these strains differ from that of the BRV vaccine strain used in the United States (G6, P1). The large number of untypeable G (23.5%) and P (40.8%) types suggests that other or new P and G types exist among BRV field strains.  相似文献   

12.
Rotaviruses are responsible for more diarrhoeal disease-associated mortality than any other single agent. Vaccination may therefore hold the key to combating diarrhoeal disease worldwide. Natural immunity to rotavirus infection indicates that rather than protection from reinfection such immunity gives rise to less severe and less frequent attacks of diarrhoea. Early attempts to design a rotavirus vaccine with bovine rotavirus failed because of poor efficacy in some developing countries. Research into rhesus rotavirus, particularly the high-titre rhesus rotavirus tetravalent (RRV-TV) vaccine, has given slightly better results. A stumbling block to truly effective oral vaccines seems to be immunogenicity in developing countries. If efficacy can be ensured by trials in the developing countries, money spent on rotavirus vaccines will be well spent.  相似文献   

13.
In the present investigation we characterized the antigenic diversity of the VP4 and VP7 proteins in 309 and 261 human rotavirus strains isolated during two consecutive epidemic seasons, respectively, in three different regions of Mexico. G3 was found to be the prevalent VP7 serotype during the first year, being superseded by serotype G1 strains during the second season. To antigenically characterize the VP4 protein of the strains isolated, we used five neutralizing monoclonal antibodies (MAbs) which showed specificity for VP4 serotypes P1A, P1B, and P2 in earlier studies. Eight different patterns of reactivity with these MAbs were found, and the prevalence of three of these patterns varied from one season to the next. The P genotype of a subset of 52 samples was determined by PCR. Among the strains characterized as genotype P[4] and P[8] there were three and five different VP4 MAb reactivity patterns, respectively, indicating that the diversity of neutralization epitopes in VP4 is greater than that previously appreciated by the genomic typing methods.  相似文献   

14.
C57BL/6 (B6) mice were immunized with a highly antigenic 10-mer peptide (P12-10), which is encoded by the murine AIDS (MAIDS) defective virus gag p12 gene, emulsified in incomplete Freund's adjuvant (ICFA). One week later, the mice were inoculated with the MAIDS virus to see if the immunization affects progression of MAIDS. It was demonstrated that the immunization significantly delayed progression of MAIDS, although it failed to induce appreciable cytotoxic T lymphocyte (CTL) responses against the P12-10 antigen. In contrast, immunization of B6 mice with the P12-10 coupled with liposome induced substantial CTL responses but failed to protect the mice against MAIDS development. This segregation between CTL activity and in vivo protection efficacy might be worth considering when we exploit vaccines for augmenting cellular immunity mediated by CD8+ T cells.  相似文献   

15.
16.
Rotavirus     
Rotavirus, the most common diarrheal pathogen in children worldwide, causes approximately one third of diarrhea-associated hospitalizations and 800,000 deaths per year. Because natural infection reduces the incidence and severity of subsequent episodes, rotavirus diarrhea might be controlled through vaccination. Serotypespecific immunity may play a role in protection from disease. Tetravalent rhesus-human reassortant rotavirus vaccine (RRV-TV) (which contains a rhesus rotavirus with serotype G3 specificity and reassortant rhesus-human rotaviruses with G1, G2, and G4 specificity) provides coverage against the four common serotypes of human rotavirus. In clinical trials in industrialized countries, RRV-TV conferred 49% to 68% protection against any rotavirus diarrhea and 61% to 100% protection against severe disease. This vaccine was licensed by the U.S. Food and Drug Administration on August 31, 1998, and should be cost-effective in reducing diarrheal diseases in industrialized countries. The vaccine's efficacy and cost-effectiveness in developing countries should be evaluated.  相似文献   

17.
OBJECTIVES: To investigate whether immunization with recombinant HIV-1 envelope protein derived from a clinical isolate could protect macaques from infection with an in vivo passaged chimeric simian-human immunodeficiency virus (SHIV). DESIGN AND METHODS: A total of 16 animals were studied from which three groups of four animals were immunized with vaccine formulations of the CC-chemokine receptor-5-binding recombinant gp120 of HIV-1W6.1D. Four weeks after the last immunization, all 16 animals were intravenously challenged with in vivo passaged SHIV derived from the same HIV-1 group B clinical isolate (W6.1D) as the vaccines. RESULTS: Vaccine protection from infection was demonstrated in 10 out of 12 macaques immunized with recombinant gp120. Complete protection from infection was achieved with all of the animals that received the SBAS2-W6.1D formulation, a potent inducer of both T-cell and humoral immune responses. Partial protection was achieved with SBAS1-W6.1D, a formulation based on immunomodulators known to induce T-cell responses in humans. In vaccinated animals that were infected, virus load was reduced and infection was delayed. CONCLUSIONS: In a relatively large number of primates, vaccine efficacy was demonstrated with a clinically relevant HIV-1 vaccine. These results reveal that it is possible to induce sterilizing immunity sufficient to protect from infection with SHIV which was passaged multiple times in vivo. Our findings have implications for current HIV-1 clinical vaccine trials and ongoing efforts to develop safe prophylactic AIDS vaccines.  相似文献   

18.
Four stains designated as OB94-1 to OB94-4 of group A bovine rotavirus (BRV) were isolated from 35 fecal samples of calves with diarrhea in sporadic outbreaks. In VP7 (G) and VP4 (P) serotyping of these isolates, OB94-1 to OB94-3 were determined as G6P5, G6P5 and G10P5, respectively, by cross neutralization (NT) test and the G- and P- serotyping polymerase chain reaction (PCR) analysis. OB94-4 showed a one-way antigenic relation with the Lincoln stain (G6P1) and a weak antigenic relationship with the KK3 strain (G10P11), and was determined as G6P11 by the PCR method. Thus, OB94-4 was shown to be a new G6 BRV with different antigenic properties from the others in the NT test.  相似文献   

19.
The demonstration of extensive differences in the antigenic makeups of the silver-haired bat rabies virus (SHBRV) and canine rabies virus (COSRV) strains raised concerns as to whether current licensed rabies vaccines are sufficiently protective against SHBRV. NIH mouse protection test results show that both the human diploid cell culture rabies vaccine (HDCV) and the purified chicken embryo cell rabies vaccine (PCECV) protected against lethal infection with SHBRV as well as the canine rabies strain COSRV. However, in this investigation, the potencies of both vaccines in mice were found to be significantly higher for COSRV than for SHBRV. The in vivo protection data are confirmed by in vitro virus neutralizing antibody (VNA) test results which demonstrate that mice immunized with HDCV or PCECV develop significantly higher VNA titres against COSRV than against SHBRV. In contrast, VNA tests of sera from individuals immunized with HDCV or PCECV showed that humans, as opposed to mice, develop significantly higher VNA titres against SHBRV than against COSRV. These data suggest that HDCV and PCECV will protect humans against infection with the silver-haired but rabies virus strain in addition to canine rabies virus strains.  相似文献   

20.
The induction of human immunodeficiency virus (HIV)-specific T-cell responses is widely seen as critical to the development of effective immunity to HIV type 1 (HIV-1). Plasmid DNA and recombinant fowlpox virus (rFPV) vaccines are among the most promising safe HIV-1 vaccine candidates. However, the immunity induced by either vaccine alone may be insufficient to provide durable protection against HIV-1 infection. We evaluated a consecutive immunization strategy involving priming with DNA and boosting with rFPV vaccines encoding common HIV-1 antigens. In mice, this approach induced greater HIV-1-specific immunity than either vector alone and protected mice from challenge with a recombinant vaccinia virus expressing HIV-1 antigens. In macaques, a dramatic boosting effect on DNA vaccine-primed HIV-1-specific helper and cytotoxic T-lymphocyte responses, but a decline in HIV-1 antibody titers, was observed following rFPV immunization. The vaccine regimen protected macaques from an intravenous HIV-1 challenge, with the resistance most likely mediated by T-cell responses. These studies suggest a safe strategy for the enhanced generation of T-cell-mediated protective immunity to HIV-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号