首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forty nine meat product samples were examined for the fungal genera. Penicillium sp. was detected in 74.8% of samples. No sample contained Aspergillus parasiticus or Aspergillus flavus. Production of aflatoxins in sausage, salami, sucuk and kavurma by A. parasiticus and A. flavus was studied at different temperatures. A. parasiticus and A. flavus produced no aflatoxins on meat products samples at 15°C. Sucuk was a poor substrate for A. parasiticus and A. flavus at 25°C. Sausage, salami and kavurma were favorable substrates for aflatoxin production by A. parasiticus at 25°C.  相似文献   

2.
The effects of cycling temperatures (5°C for 12 hr and 25°C for 12 hr) on aflatoxin production by Aspergillus parasiticus NRRL 2999 in yeast extract sucrose (YES) medium were studied. Cycling temperatures, after preincubation at 25°C for various times, resulted in more aflatoxin B1, G1, and total aflatoxin production than did constant incubation at either 25°C, which is generally considered to be the optimum for aflatoxin production, or 15°C, which is the same total thermal input as the 5-25°C temperature cycling. With increased preincubation time at 25°C, toxin production increased and the lag phase of growth was shortened or not evident. Cultures that were preincubated at 25°C for 1, 2, and 3 days prior to onset of temperature cycling showed the greatest increase in maximum aflatoxin production over the 25°C and 15°C constant temperatures. Cultures that were not preincubated at 25°C but subjected to constantly fluctuating temperatures produced maximum amounts of aflatoxin equivalent to cultures incubated at a constant 25°C. The maximum aflatoxin production at all temperatures studied occurred during the late log phase of growth and at pH minimums. Aflatoxins were found in higher concentrations in the broth than the mycelia under temperature cycling conditions, at 15°C, and at 25°C during the first 21 days of incubation, whereas greater amounts of toxin were retained in mycelium at 25°C in the later incubation period (28-42 days).  相似文献   

3.
A study was made of Aspergillus parasiticus growth and aflatoxin production on four taro media. The critical equilibrium relative humidity (ERH) for natural mold growth on unsterilized dehydrated taro was 88% at 20°C. However, nontoxigenic A. parasiticus NRRL 1957 did not grow at this ERH on dehydrated raw taro incubated at 20°, 30°, or 40°C. Instead, the growth of A. parasiticus NRRL 1957 on dehydrated taro was optimum at 30°C and an ERH of 96%. Aflatoxin production by toxigenic A. parasiticus NRRL 2999 was investigated on four taro media under optimal growth conditions. Only moderate quantities of aflatoxins were produced by A. parasiticus NRRL 2999 on uncooked dehydrated taro, but cooking or supplementation with peptone stimualted mycelial growth and aflatoxin production slightly. Nevertheless, growth and aflatoxin production on cooked or peptone-supplemented taro media was low.  相似文献   

4.
Aspergillus flavus Link and A. parasiticus Speare differed in sporulation and aflatoxin B1 formation on 15 brown rices differing in starch properties and protein content. There was no significant correlation between the degree of spore formation by the fungi and the amount of aflatoxin they produced in the rice samples. Differences in sporulation and aflatoxin production were not correlated with the dimensions (weight and hardness) of brown rice nor with the protein content, alkali spreading value, amylose content and gel viscosity of milled rice. Aflatoxin B1 was mainly concentrated in the bran layers. Histological examination revealed that the hyphae of A. flavus entered through cracks in the periderm and penetrated the endosperm.  相似文献   

5.
Abstract: The aim of this study was to model the radial growth rate and to assess aflatoxin production by Aspergillus flavus as a function of water activity (aw 0.82 to 0.92) and temperature (12 to 42 °C) on polished and brown rice. The growth of the fungi, expressed as colony diameter (mm) was measured daily, and the aflatoxins were analyzed using HPLC with a fluorescence detector. The growth rates were estimated using the primary model of Baranyi, which describes the change in colony radius as a function of time. Total of 2 secondary models were used to describe the combined effects of aw and temperature on the growth rates. The models were validated using independent experimental data. Linear Arrhenius–Davey model proved to be the best predictor of A. flavus growth rates on polished and brown rice followed by polynomial model. The estimated optimal growth temperature was around 30 °C. A. flavus growth and aflatoxins were not detected at 0.82 aw on polished rice while growth and aflatoxins were detected at this aw between 25 and 35 °C on brown rice. The highest amounts of toxins were formed at the highest aw values (0.90 to 0.92) at a temperature of 20 °C after 21 d of incubation on both types of rice. Nevertheless, the consistencies of toxin production within a wider range of aw values occurred between 25 to 30 °C. Brown rice seems to support A. flavus growth and aflatoxin production more than the polished rice. Practical Application: The developed models can be used to estimate to what extent the change in grain ecosystem conditions affect the storage stability and safety of grains without the need for running long‐standing storage study. By monitoring the intergranular relative humidity and temperature at different locations in the storage facility and inputting these data into the models, it is directly possible to assess either the conditions are conductive for the growth of A. flavus or aflatoxin production.  相似文献   

6.
Relatively few data exist regarding concentrations of aflatoxins and their causative organisms in dusts within occupational environments. Here, we examined Aspergillus Section Flavi populations and aflatoxin levels in 54 samples of dusts generated by agricultural processing facilities as possible indicators of aflatoxin exposure in the Philippines. The average incidence of Aspergillus Section Flavi expressed as a percentage of total mould populations in rice dust, corn dust, feed dust and copra dust were 8, 4, 31 and 10%, respectively. Predominant aflatoxigenic fungi isolated were Aspergillus flavus and A. parasiticus with ratios of 31:1, 40:5, 16:4 and 1:1 in rice dust, corn dust, feed dust and copra dust, respectively. Aflatoxins produced by selected isolates in in vitro rice culture ranged from 100 µg kg?1 to 100.5 mg kg?1. Toxigenicity of isolates based on the average aflatoxin concentrations produced by positive isolates were in the order of copra dust > corn dust > rice dust > feed dust. Average natural concentrations of aflatoxins in rice dust, corn dust, feed dust, and copra dust were 25, 6, 15 and 10 µg kg?1, respectively. Estimates of the amount of inhaled aflatoxins by workers in an 8‐h work shift ranged from 0.06 to 114 ng, the average of which is higher than the amount of aflatoxins ingested by Filipinos due to the consumption of polished rice. The presence of highly toxigenic Aspergillus Section Flavi and aflatoxins in agricultural dust is a critical health risk for workers, considering the frequency of exposure and the possibility of inhalation and subsequent absorption of aflatoxins in the respiratory tract. Copyright © 2006 Society of Chemical Industry  相似文献   

7.
Growth and aflatoxin production by injured spores (heat, 55°C for 15 min, γ-irradiation, 50 Krad) of Aspergillus parasiticus in the presence of sorbate (0.05 and 0.1%) and propionate (0.2 and 0.4%) were studied in YES broth at pH 4.5, 5.5 and 6.5, and 25°C for 21 days. Aflatoxin production was accelerated in the early stages of growth by γ-irradiation, but not heat. Growth and aflatoxin were delayed in cultures from low numbers of uninjured spores. Aflatoxin increased and was produced sooner by low numbers of uninjured spores in 0.05% sorbate. Both inhibitors slowed growth of injured spores more than non-injured. Inhibition of aflatoxin was dependent on the concentration of inhibitor, pH and injury.  相似文献   

8.
Recent research has showed that Aspergillus flavus and Aspergillus parasiticus are aflatoxigenic species that can become very competitive in the framework of climate change. Aflatoxins show carcinogenic, mutagenic, immunotoxic and teratogenic effects on human and animals. Effective and sustainable measures to inhibit these species and aflatoxins in food are required. Origanum vulgare and Cinnamomum zeylanicum essential oils (EOs) and their major active constituents, carvacrol and cinnamaldehyde, respectively, were assayed for inhibiting these species and aflatoxin production in maize extract medium under different environmental conditions. Doses of 10–1000 mg l?1 were assayed and the effective doses for 50 (ED50) and 90% (ED90) growth inhibition were determined. The ED50 of cinnamaldehyde, carvacrol, oregano EO, and cinnamon EO against A. flavus were in the ranges 49–52.6, 98–145, 152–505, 295–560 mg l?1 and against A. parasiticus in the ranges 46–55.5, 101–175, 260–425 and 490–675 mg l?1, respectively, depending on environmental conditions. In A. flavus treatments ED90 were in the ranges 89.7–90.5, 770–860 and 820–>1000 mg l?1 for cinnamaldehyde, carvacrol and cinnamon EO, and in A. parasiticus treatments in the ranges 89–91, 855–>1000 and 900–>1000 mg l?1, respectively. ED90 values for oregano EO against both species were >1000 mg l?1. Growth rates of both species were higher at 37 than at 25°C and at 0.99 than at 0.96 aw. Aflatoxin production was higher at 25 than at 37°C. Stimulation of aflatoxin production was observed at low doses except for cinnamaldehyde treatments. The effectiveness of EOs and their main constituents to inhibit fungal growth and aflatoxin production in contact assays was lower than in vapour phase assays using bioactive EVOH-EO films previously reported.  相似文献   

9.
In Algeria, little information is available on the population structure of Aspergillus section Flavi in raw materials and resultant animal feeds. A total of 172 isolates belonging to Aspergillus section Flavi were recovered from 57 animal feeds and identified on the basis of macro and micro-morphological characters, mycotoxin production and genetic relatedness. For the molecular analysis, sequencing of the calmodulin gene (CaM) and the internal transcribed spacer (ITS) regions were performed for representative isolates. Four distinct morphotypes were distinguished: Aspergillus flavus (78.5%), Aspergillus tamarii (19.2%), Aspergillus parasiticus (1.7%), and Aspergillus alliaceus (0.6%). All A. flavus isolates were of the L type and no correlation between sclerotia production and aflatoxigenicity was observed. Our results showed that 68% of the A. flavus strains produced aflatoxins B (AFB), and 72.7% were cyclopiazonic acid (CPA) producers. The three isolates of A. parasiticus were able to produce AFB and aflatoxins G but not CPA whereas, all the strains of A. tamarii produced only CPA. The obtained results revealed the presence of different species of Aspergillus section Flavi, among which were aflatoxin producers. This study provides evidence useful for considerations in aflatoxin control strategies.  相似文献   

10.
Two strains of Peniciltium urticae (NRRL 2159A and 1952) and one strain of P. cltrinun (NRRL 5927) were used to investigate the effect of temperature Oycling on the production of patulin and citrinin. Temperature cycling (33–25°C, 33–15°C, and 25–15°C) delayed the rate of patulin biogenesis. As a general rule, cultures grown under cycling temmperature conditions produced less patulin than cultures grown a1 constant temperatures. The effect of temperature cycling (30–25°C, 30–15°C, and 25–15°C) on citrinin production was found to vary with the temperature combination.  相似文献   

11.
Over a period of three years 420 samples of various smoke-dried meat products, collected from individual households in different region of Croatia were analysed for the presence of aflatoxigenic strains of the Aspergillus flavus group. Strains of A. flavus and A. parasiticus were present in 17,8% of the samples, and aflatoxin-producing ability was tested in 75 strains. In relation to sequential method of aflatoxin detection, 5 of 8 isolates were found in the first step (fluorescence in aflatoxin-producing ability medium - APA) and all of them in the second step (extraction method from syntheses on moist shredded wheat - SW). A. flavus strains produced mainly aflatoxin B1, and had various levels of toxigenicity (1.4–3.12 mg/kg). Some strains of A. parasiticus produced all four aflatoxins B1 B2 G1 G2, while the other ones produced AF B1 + G1 only, with concentrations of aflatoxins from 0.1 to 450 mg/kg.  相似文献   

12.
In this study, we investigated the potential of aflatoxin B1 (AFB1) production by five Aspergillus flavus strains previously isolated from sorghum grains on cereals (barley, maize, rice, wheat and sorghum), oilseeds (peanuts and sesame) and pulses (greengram and horsegram). Five strains of A. flavus were inoculated on all food grains and incubated at 25 °C for 7 days; AFB1 was extracted and estimated by enzyme‐linked immunosorbent assay. All A. flavus strains produced AFB1 on all food grains ranging from 245.4 to 15 645.2 μg kg?1. Of the five strains tested, strain Af 003 produced the highest amount of AFB1 on all commodities ranging from 2245.2 to 15 645.2 μg kg?1. Comparatively, the AFB1 accumulation was high on rice grains ranging from 3125.2 to 15 645.2 μg kg?1, followed by peanuts ranging from 2206.2 to 12 466.5 μg kg?1. Less AFB1 accumulation was observed in greengram and sesame seeds ranging from 645.8 to 2245.2 and 245.4 to 2890.6 μg kg?1, respectively. Our results showed that all food grains tested are susceptible to A. flavus growth and subsequent AFB1 production.  相似文献   

13.
The effects of illumination, near-ultraviolet, incubation temperature pH and some minor elements on the growth rate and production of aflatoxin B1 by A. flavus and ochratoxin A by A. ochraceus were investigated. Aflatoxin B1 and ochratoxin A production was considerably higher in the light than in the dark. The greatest aflatoxin B1 and ochratoxin A production was occurred after 11 days of fermentation with light- and dark-grown cultures at 25 °C. The mycelial dry weight was also greater in the light than in the dark for both A. flavus and A. ochraceus. Exposure of conidia to near-UV irradiation increased mycelial dry weight and mycotoxins by both fungi more than white light. The greatest aflatoxin B1 and ochratoxin A was at 25 °C with UV-grown culture (24 h exposure) producing a mean of 400 and 260 μg/50 ml of medium, respectively. The maximum aflatoxin B1 and ochratoxin A yield was obtained at pH 5.5 and with increasing the initial pH to near neutrality, both mycotoxins yield decreased. Iron, cupper and zinc were observed to stimulate aflatoxin B1 and ochratoxin A production and enhanced the growth rate of both A. flavus and A. ochraceus.  相似文献   

14.
15.
The objective of this study was to compare the effect of different storage moisture conditions (0.70, 0.85, 0.90 and 0.95 water activity, aw) and temperatures (20, 25, 30 °C) on (a) respiration rates (R) and dry matter loss (DML) of paddy and brown rice and (b) quantify aflatoxin B1 (AFB1) production by isolates of Aspergillus flavus from the rice samples and (c) inoculation of both rice types with A. flavus under these storage conditions on R, DML and AFB1 contamination. There was an increase in temporal CO2 production with wetter and warmer conditions in naturally contaminated rice. Higher R and consequently, % DML, were generally found in the brown rice (21%) while in paddy rice this was only up to 3.5% DML. From both rice types, 15 (83.3%) of 18 A. flavus isolates produced detectable levels of AFB1 in a range 2.5–1979.6 μg/kg. There was an increase in DML in both rice types inoculated with A. flavus as temperature and aw were increased. Interestingly very little AFB1 was detected in paddy rice, but significant contamination occurred in the brown rice. The %DML in the control and A. flavus inoculated rice increased with temperature and aw at both 25 and 30 °C from 1-2% to 15–20% DML at 30 °C and 0.95 aw. All the inoculated rice samples had AFB1 levels above the EU legislative limits for contamination in other temperate cereals and products derived from cereals (=2 μg/kg). Even samples with % DML as low as 0.2% had AFB1 contamination levels twice the limits for other cereals. These results suggest that the mycotoxin contamination risk in staple commodities like rice, is influenced by whether the rice is processed or not, and that measurement of R rates can be used to predict the relative risk of AFB1 contamination in such staple commodities.  相似文献   

16.
In vitro experimental environments are used to study interactions between microorganisms, and to predict dynamics in natural ecosystems. This study highlights that experimental in vitro environments should be selected to match closely the natural environment of interest during in vitro studies to strengthen extrapolations about aflatoxin production by Aspergillus and competing organisms. Fungal competition and aflatoxin accumulation were studied in soil, cotton wool or tube (water-only) environments, for Aspergillus flavus competition with Penicillium purpurogenum, Fusarium oxysporum or Sarocladium zeae within maize grains. Inoculated grains were incubated in each environment at two temperature regimes (25 and 30°C). Competition experiments showed interaction between the main effects of aflatoxin accumulation and the environment at 25°C, but not so at 30°C. However, competition experiments showed fungal populations were always interacting with their environments. Fungal survival differed after the 72-h incubation in different experimental environments. Whereas all fungi incubated within the soil environment survived, in the cotton wool environment none of the competitors of A. flavus survived at 30°C. With aflatoxin accumulation, F. oxysporum was the only fungus able to interdict aflatoxin production at both temperatures. This occurred only in the soil environment and fumonisins accumulated instead. Smallholder farmers in developing countries face serious mycotoxin contamination of their grains, and soil is a natural reservoir for the associated fungal propagules, and a drying and storage surface for grains on these farms. Studying fungal dynamics in the soil environment and other environments in vitro can provide insights into aflatoxin accumulation post-harvest.  相似文献   

17.
Ethyl acetate extracts and hydrodistillated essential oils from five cultivars of tropical citrus epicarps were evaluated for their inhibitory activities against Aspergillus fumigatus, Aspergillus niger, Aspergillus flavus, Aspergillus parasiticus, and Penicillium sp. using disk diffusion and broth microdilution assays. Essential oils prepared from kaffir lime (Citrus hystrix DC) and acid lime (Citrus aurantifolia Swingle) epicarps exhibited stronger antifungal activity to all fungi than their ethyl acetate extracts with minimum inhibitory concentration and minimum fungicidal concentration values of 0.56 and 1.13 mg/ml (dry matter), respectively, against aflatoxin-producing A. flavus and A. parasiticus. The dominant components of the essential oil from kaffir lime were limonene, citronellol, linalool, o-cymene, and camphene, whereas limonene and p-cymene were major components of acid lime essential oil. Pure limonene, citronellal, and citronellol were five to six times less fungicidal than the natural essential oils, indicating the synergistic activity of many active compounds present in the oils. Kaffir and acid lime essential oils significantly reduced aflatoxin production of A. flavus and A. parasiticus, particularly lime essential oil, which completely inhibited growth and aflatoxin production of A. flavus at the concentration of 2.25 mg/ml. Target cell damage caused by acid lime essential oil was investigated under transmission electron microscopy. Destructive alterations of plasma and nucleus membrane, loss of cytoplasm, vacuole fusion, and detachment of fibrillar layer were clearly exhibited in essential-oil-treated cells.  相似文献   

18.
Samples of rotting sweet orange (Citrus sinensis) were obtained from the depots, sales counters and waste baskets. Fungi associated with rotting fruits were isolated and identified. Out of 12 species of fungi isolated, 8 are known to be producers of toxins. The 7 isolates of Aspergillus flavus obtained were screened for aflatoxin production in a nutrient solution, and 4 were found to be aflatoxigenic, producing primarily aflatoxin B1. Aflatoxin B1 production of the toxigenic isolates were further studied on plain juice and juice separately supplemented with 2.0% yeast extract and 2.0% sucrose. The highest yield of aflatoxin B1 was produced on juice supplemented with yeast extract by the 4 toxigenic A. flavus isolates, followed by sucrose supplementation while the lowest amount of aflatoxin B1 was detected on plain juice. Optimum temperature for aflatoxin B1 production by A. flavus isolate (IBA-O1) was 25 °C to 30 °C, for an incubation period of 7–11 days on plain and supplemented juice media.  相似文献   

19.
Mathematical models were developed to predict fungal growth and aflatoxin production of Aspergillus flavus. Fungal growth and aflatoxin concentrations were measured. The Baranyi model was fitted to fungal growth and toxin production data to calculate kinetic parameters. Quadratic polynomial and Gaussian models were then fitted to μmax and LPD (lag phase duration) values. The ranges of temperature and a w values showing a μmax value increase were 15–35°C and 0.891–0.984, respectively. LPD was only observed when the temperature was 20–35°C with a w=0.891?0.972. The μmax growth value increased up to 35°C with \(b_w = 0.2\left( {b_w = \sqrt {1 - a_w } } \right)\) , then values declined. LPDgrowth values increased as the b w value increased. The μmax value for aflatoxins increased up to 25°C, but decreased after 30°C, indicating that the developed models are useful for describing the kinetic behavior of Aspergillus flavus growth and aflatoxin production.  相似文献   

20.
The Aspergillus flavus population was evaluated in the period 1998–2001 in soil samples from the peanut‐growing region in Argentina. A total of 369 A flavus isolates were examined for sclerotia, aflatoxin and cyclopiazonic acid production. The L phenotype was isolated in a higher percentage than the S phenotype and represented 59% of the total isolates. Statistical analysis showed significant differences between L, S and non‐sclerotial strains with regard to aflatoxin and cyclopiazonic acid production (p < 0.05). The S strains produced higher mycotoxin levels than the L and non‐sclerotial strains. About 10% of the S strains had an unusual pattern of mycotoxin production because they simultaneously produce aflatoxins B and G and CPA. The SBG strains isolated in the present study have all morphological and microscopic characteristics of A flavus. These strains are of concern in food safety, as there is a higher probability of aflatoxin contamination in peanuts. Copyright © 2005 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号