首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Hormone-sensitive lipase (HSL) catalyzes the rate-limiting step in adipocyte lipolysis. We have studied the effect of glucose and long chain fatty acids on the HSL mRNA content of 3T3-F442A adipocytes. Exposure of the cells for 32 h to a medium without glucose led to a decrease by a factor of 2.5-3 in the HSL mRNA without a change in C/EBP alpha mRNA or triglyceride content of the adipocytes. The reduction in HSL mRNA level was accompanied by a decrease in HSL total activity. The effect of glucose exposure was observed after 24 h of exposure and was reversible. Treatment of the adipocytes with oleate did not affect HSL expression. These data show that glucose modulates HSL gene expression and hence could participate in the regulation of adipose tissue lipolysis.  相似文献   

4.
We have initiated an investigation of the de novo purine nucleotide biosynthetic pathway in the plant Arabidopsis thaliana. Functional suppression of Escherichia coli auxotrophs allowed the direct isolation of expressed Arabidopsis leaf cDNAs. Using this approach we have successfully suppressed mutants in 4 of the 12 genes in this pathway. One of these cDNA clones, encoding 5'-phosphoribosyl-5-aminoimidazole (AIR) synthetase (PUR5) has been characterized in detail. Analysis of genomic DNA suggests that the Arabidopsis genome contains a single AIR synthetase gene. Analysis of the cDNA sequence and mRNA size suggests that this enzyme activity is encoded by a monofunctional polypeptide, similar to that of bacteria and unlike other eukaryotes. The Arabidopsis AIR synthetase contains a basic hydrophobic transit peptide consistent with transport into chloroplasts. Comparison of both the predicted amino acid and nucleotide sequence from Arabidopsis to those of eight other distant organisms suggests that the plant sequence is more similar to the bacterial sequences than to other eukaryotic sequences. This study provides the groundwork for future investigations into the regulation of de novo purine biosynthesis in plants. Additionally, we have demonstrated that functional suppression of bacterial mutants may provide a useful method for cloning a variety of plant genes.  相似文献   

5.
Stromal fibroblasts in the primate endometrium undergo dramatic morphological and biochemical changes in response to pregnancy. This transformation is characterized by the expression of insulin-like growth factor binding protein-1 (IGFBP-1). Stromal cells from the baboon endometrium of nonpregnant animals were cultured and subsequently treated with cytochalasin D to disrupt actin filaments. In response to cytochalasin D treatment, cells contracted and became rounded as early as 10 min after the initiation of treatment. When cytochalasin D was removed, cells reverted back to their original fibroblastic shape within 1 h. After cells were treated with cytochalasin D for 5 h, addition of (Bu)2cAMP and/or hormones (estradiol, medroxyprogesterone acetate, and relaxin) resulted in the expression of IGFBP-1 messenger RNA and protein within 24 h. Cells with an intact cytoskeleton did not express detectable levels of IGFBP-1 in response to hormones and/or (Bu)2cAMP. Furthermore, the addition of cycloheximide inhibited expression of IGFBP-1 in cytochalasin D-treated cells. Stromal cells were also isolated from early pregnant and simulated pregnant animals. Within 48 h, cells from both the pregnant and simulated pregnant animals produced IGFBP-1 in response to hormones and/or (Bu)2cAMP. In these studies, IGFBP-1 expression was also inhibited by cycloheximide. These studies suggest that induction of IGFBP-1 requires an intermediary protein and that alterations in the cytoskeleton may be involved.  相似文献   

6.
7.
In the monocytic THP-1 cells, the 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor simvastatin (5 microM) enhances the conversion of exogenous linoleic (18:2 n-6) and eicosapentaenoic (20:5 n-3) acids to their long-chain polyunsaturated fatty acid (LC-PUFA) derivatives, and this effect is associated with changes in the desaturation steps. In addition, formation of monounsaturated fatty acids from endogenously synthesized precursors is increased. These metabolic changes lead to elevated LC-PUFA and fatty acid (FA) unsaturation in cells. The effects of simvastatin on FA metabolism are associated with increased synthesis of triglycerides from glycerol. The dose-effect relationships for the activity of simvastatin on total linoleic acid (LA) conversion and cholesterol synthesis reveal that enhancement of PUFA metabolism is already maximal at 0.5 microM simvastatin, whereas cholesterol synthesis is further inhibited by concentrations of simvastatin up to 5 microM. The effects of 5 microM simvastatin on PUFA metabolism are partially prevented by mevalonate (1 mM) and geranylgeraniol (5 microM) but not by farnesol (10 microM). These data indicate that HMG-CoA inhibitors have profound effects on PUFA metabolism, and that the pathways for cholesterol and PUFA synthesis are mutually modulated.  相似文献   

8.
Limb regeneration is a phenomenon occurring only in some urodeles. The process seems to be initiated by the dedifferentiation of the terminally differentiated cells. These cells differentiate, subsequently, to the tissues that comprise the limb, thus reconstructing the pattern of the missing limb part. In this paper we review and present evidence that certain cell types of the limb have the capacity to differentiate to different cell types than their original one by cellular metaplasia. This switch is called transdifferentiation. The focus of this review is the process of dedifferentiation which is the necessary prerequisite for differentiation, and the possible mechanisms involved.  相似文献   

9.
The question of how to design a water-soluble globular protein remains. We report here the synthesis of a native-like and pore-forming small globular protein (SGP, 69 amino acid residues). The protein was designed to have four helices: a Trp-containing short hydrophobic helix in the middle surrounded by three Tyr-containing long basic amphiphilic helices. Size-exclusion chromatography and CD measurements indicated that in buffer solution SGP is monomeric with a 50% helical structure. SGP did not completely denature even at high temperature (90 degrees C) and at relatively high Gu x HCl concentration so that the denaturant concentration at the midpoint of the transition is 5 M. Dye binding studies and fluorescence energy transfer experiments showed that SGP possesses a hydrophobic binding site and its Trp of the central helix is present at a relatively hydrophobic region and accepts the energy from Tyr(s) in other amphiphilic helices, indicating that SGP takes a stable globular-like structure in aqueous solution. From the depth-dependent fluorescent studies using egg PC liposomes containing n-doxyl fatty acids and brominated phospholipid as quenchers, it was found that the hydrophobic central alpha-helix is able to enter spontaneously into the lipid bilayers and the Trp in the central alpha-helix is located at about the middle of the alkyl chain in the outer layer of the phospholipid bilayer. The peptide is also able to increase the membrane permeability with two modes of current (basal current and single ion channel) in planar phospholipid bilayers, indicating the spontaneous insertion of the protein into the lipid bilayer (basal current) and then the formation of a uniform size of channel pore (14 pS). SGP is useful as a basic and starting model to find good amino acid sequences that fold to a desired protein structure and to search translocation mechanisms from aqueous solution into lipid bilayers.  相似文献   

10.
Salicylic acid-induced protein kinase (SIPK) and wounding-induced protein kinase (WIPK), two distinct members of the mitogen-activated protein (MAP) kinase family, are activated in tobacco resisting infection by tobacco mosaic virus (TMV). WIPK activation by TMV depends on the disease-resistance gene N because infection of susceptible tobacco not carrying the N gene failed to activate WIPK. Activation of WIPK required not only posttranslational phosphorylation but also a preceding rise in its mRNA and de novo synthesis of WIPK protein. The induction by TMV of WIPK mRNA and protein also occurred systemically. Its activation at the mRNA, protein, and enzyme levels was independent of salicylic acid. The regulation of WIPK at multiple levels by an N gene-mediated signal(s) suggests that this MAP kinase may be an important component upstream of salicylic acid in the signal-transduction pathway(s) leading to local and systemic resistance to TMV.  相似文献   

11.
The de novo biosynthesis of fatty acids of 12 to 18 carbons from precursors of 5 carbons or fewer has been demonstrated in Acholeplasma laidlawii B. Radiolabeling experiments indicated that the normal primers for the synthesis of the even- and odd-chain fatty acids are acetate and propionate or valerate, respectively. Saturated straight-chain monomethyl-branched fatty acids of up to five carbons were readily utilized as primers, wheras more highly branched species and those possessing halogen substituents or unsaturation were not utilized. At primer concentrations of 1 to 3 mM, up to 80% of the total cellular lipid fatty acids were derived from exogenous primer. The mean chain length of the exogenous primer-derived fatty acids rose with increasing primer incorporation for methyl-branched short-chain fatty acids but was invariant for propionate. The products of de novo biosynthesis varied only slightly with temperature or cholesterol supplementation, suggesting that de novo biosynthesis is not directly influenced by membrane fluidity. Cerulenin inhibited de novo biosynthesis in a fashion that suggests the presence of two beta-ketoacyl thioester synthetases, which differ in substrate chain length specificity and in susceptibility to inhibition by the antibiotic.  相似文献   

12.
In this report we discuss the design, synthesis, and validation of a novel series of cyclic urea inhibitors of the blood coagulation protein Factor Xa. This work culminates in compound 11, a monoamidine inhibitor of fXa employing a new S4 ligand that reduces the cationic character of these analogs. Compound 11 represents a lead for a series of more potent and selective inhibitors.  相似文献   

13.
Caspase 3-like proteases are key executioners in mammalian apoptosis, and the calpain family of cysteine proteases has also been implicated as an effector of the apoptotic cascade. However, the influence of upstream events on calpain/caspase activation and the role of calpain/caspase activation on subsequent downstream events are poorly understood. This investigation examined the temporal profile of apoptosis-related events after staurosporine-induced apoptosis in mixed glial-neuronal septo-hippocampal cell cultures. Following 3 hr exposure to staurosporine (0.5 microM), calpain and caspase 3-like proteases processed alpha-spectrin to their signature proteolytic fragments prior to endonuclease-mediated DNA fragmentation (not evident until 6 hr), indicating that endonuclease activation is downstream from calpain/caspase activation. Cycloheximide, a general protein synthesis inhibitor, completely prevented processing of alpha-spectrin by calpains and caspase 3-like proteases, DNA fragmentation and cell death, indicating that de novo protein synthesis is an upstream event necessary for activation of calpains and caspase 3-like proteases. Calpain inhibitor II and the pan-caspase inhibitor Z-D-DCB each inhibited their respective protease-specific processing of alpha-spectrin and attenuated endonuclease DNA fragmentation and cell death. Thus, activation of calpains and caspase 3-like proteases is an early event in staurosporine-induced apoptosis, and synthesis of, as yet, unknown protein(s) is necessary for their activation.  相似文献   

14.
von Hippel-Lindau (VHL) disease is a dominantly inherited disorder predisposing those afflicted to hemangioblastomas of the central nervous system and the retina, renal cell carcinomas, pheochromocytomas, and pancreatic tumors. The disease has been associated with mutations of the VHL gene. The screening of 92 unrelated patients with VHL disease for point mutations in this gene revealed 61 DNA variants. In addition, a search for EcoR1 rearrangements revealed germline anomalies in 5 patients. The 61 variants could be subdivided in 20 mutations predicted to alter the open reading frame (8 nonsense mutations, 8 frame shift mutations, and 4 mutations in consensus splicing sites) and 43 DNA sequence variants of a priori unknown biological consequence (4 in-frame insertions or deletions, 36 missense mutations, and 3 apparently silent variations). The 3' end of the coding sequence of the VHL gene, which encodes the Elongin binding domain was the site of 5 of 20 truncating mutations (25%) and of 18 of 41 DNA variants (44%) causing uncertain functional impairment. A similar screening in 18 patients with sporadic hemangioblastoma revealed 2 missense DNA variants. In order to corroborate this latter observation, a systematic screening for germline alteration of the VHL gene might be performed in a larger series of sporadic hemangioblastoma. If this preliminary result is confirmed, more than 10% of sporadic hemangioblastoma might be related to a mild VHL disease, thus a follow-up program similar to that recommended in cases of VHL disease should probably be discussed in the corresponding families.  相似文献   

15.
16.
The bone morphogenetic proteins (BMPs), TGF beta superfamily members, play diverse roles in embryogenesis, but how the BMPs exert their action is unclear and how different BMP receptors (BMPRs) contribute to this process is not known. Here we demonstrate that the two type I BMPRs, BMPR-IA and BMPR-IB, regulate distinct processes during chick limb development. BmpR-IB expression in the embryonic limb prefigures the future cartilage primordium, and its activity is necessary for the initial steps of chondrogenesis. During later chondrogenesis, BmpR-IA is specifically expressed in prehypertrophic chondrocytes. BMPR-IA regulates chondrocyte differentiation, serving as a downstream mediator of Indian Hedgehog (IHH) function in both a local signaling loop and a longer-range relay system to PTHrP. BMPR-IB also regulates apoptosis: Expression of activated BMPR-IB results in increased cell death, and we showed previously that dominant-negative BMPR-IB inhibits apoptosis. Our studies indicate that in TGF beta signaling systems, different type I receptor isoforms are dedicated to specific functions during embryogenesis.  相似文献   

17.
Cyclic beta-(1,2)-glucans are synthesized by members of the Rhizobiaceae family through protein-linked oligosaccharides as intermediates. The protein moiety is a large inner membrane molecule of about 319 kDa. In Agrobacterium tumefaciens and in Rhizobium meliloti the protein is termed ChvB and NdvB, respectively. Inner membranes of R. meliloti 102F34 and A. tumefaciens A348 were first incubated with UDP-[14C]Glc and then solubilized with Triton X-100 and analyzed by polyacrylamide gel electrophoresis under native conditions. A radioactive band corresponding to the 319-kDa protein was detected in both bacteria. Triton-solubilized inner membranes of A. tumefaciens were submitted to native electrophoresis and then assayed for oligosaccharide-protein intermediate formation in situ by incubating the gel with UDP-[14C]Glc. A [14C]glucose-labeled protein with an electrophoretic mobility identical to that corresponding to the 319-kDa [14C]glucan protein intermediate was detected. In addition, protein-linked radioactivity was partially chased when the gel was incubated with unlabeled UDP-Glc. A heterogeneous family of cyclic beta-(1,2)-glucans was formed upon incubation of the gel portion containing the 319-kDa protein intermediate with UDP-[14C]Glc. A protein with an electrophoretic behavior similar to the 319-kDa protein intermediate was "in gel" labeled by using Triton-solubilized inner membranes of an A. tumefaciens exoC mutant, which contains a protein intermediate without nascent glucan. These results indicate that initiation (protein glucosylation), elongation, and cyclization were catalyzed in situ. Therefore, the three enzymatic activities detected in situ reside in a unique protein component (i.e., cyclic beta-(1,2)-glucan synthase). It is suggested that the protein component is the 319-kDa protein intermediate, which might catalyze the overall cyclic beta-(1,2)-glucan synthesis.  相似文献   

18.
Proton exchange with aqueous media coupled to heme oxidation/reduction is commonly seen but not understood in natural cytochromes. Our synthetic tetrahelix bundle heme protein maquettes successfully reproduce natural proton coupling to heme oxidation/reduction. Potentiometry reveals major pK shifts from 4.2 to 7.0 and from 9.4 to 10.3 in the maquette-associated acid/base group(s) upon heme reduction. Consequently, a 210 mV decrease in the heme redox potential is observed between the two extremes of pH. Potentiometry with resonance Raman and FTIR spectroscopy performed over a wide pH range strongly implicates glutamate side chains as the source of proton coupling below pH 8.0, whereas lysine side chains are suggested above pH 8.0. Remarkably, the pK values of several glutamates in the maquette are elevated from their solution value (4.4) to values as high as 7.0. It is suggested that these glutamates are recruited into the interior of the bundle as part of a structural rearrangement that occurs upon heme binding. Glutamate to glutamine variants of the prototype protein demonstrate that removal of the glutamate closest to the heme diminishes but does not abolish proton exchange. It is necessary to remove additional glutamates before pH-independent heme oxidation/reduction profiles are achieved. The mechanism of redox-linked proton coupling appears to be rooted in distributed partial charge compensation, the magnitude of which is governed by the dielectric distance between the ferric heme and acid/base side chains. A similar mechanism is likely to exist in native redox proteins which undergo charge change upon cofactor oxidation/reduction.  相似文献   

19.
20.
The homotypic aggregation of neutrophils requires the participation of L-selectin and the beta 2-integrins, but it has not been clear whether the two receptors recognize one another as counter-structures or whether other adhesion molecules are involved. We have examined aggregation of live neutrophils with target populations, manipulated to alter expression of adhesive epitopes, using flow cytometry. A target population depleted of both L-selectin and activatable beta 2-integrin displayed an ability to aggregate with live neutrophils, suggesting that these two molecules are not counter-structures. We also found that an O-sialoglycoprotease (GCP) from Pasteurella haemolytica is capable of inhibiting homotypic aggregation. Neutrophils treated with GCP lose O-glycosylated proteins but retain L-selectin and activatable beta 2-integrin. One or more of the GCP substrates appears to function in L-selectin-dependent binding but not in beta 2-integrin-dependent binding. Together the data suggest a mechanism of aggregation that is analogous to leukocyte-endothelial cell adhesion in which a low-affinity carbohydrate-dependent interaction precedes a high-affinity integrin-dependent adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号