首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2-Ketoaldonate reductase, which is involved in ketogluconate catabolism, was purified to homogeneity from Brevibacterium ketosoreductum ATCC21914. The enzyme was found to catalyze the reduction of 2,5-diketo-D-gluconate to 5-keto-D-gluconate, and to a lesser extent, 2-keto-D-gluconate to D-gluconate, and 2-keto-L-gluconate to L-idonate. The molecular mass of the reductase was 35 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 72 kDa by gel filtration, indicating that the native enzyme may exist as a dimer. The reductase was optimally active at pH 6.0 with NADPH as a preferred electron donor. The pI of 4.7 was measured for the enzyme. The apparent Km for 2,5-diketo-D-gluconate and NADPH were 5 microM and 10 microM, respectively. The amino-terminal amino acid sequence was NH2-Ala-Ser-Ile-Ser-Val-Ser-Val-Pro-Ser-Ala- Arg-Leu-Ala-Glu-Asp-Leu-Ser-Asp-Ile-Glu.  相似文献   

2.
Enterobacter cloacae nitroreductase (NR) is a flavoprotein which catalyzes the pyridine nucleotide-dependent reduction of nitroaromatics. Initial velocity and inhibition studies have been performed which establish unambiguously a ping-pong kinetic mechanism. NADH oxidation proceeds stereospecifically with the transfer of the pro-R hydrogen to the enzyme and the amide moiety of the nicotinamide appears to be the principal mediator of the interaction between NR and NADH. 2,4-Dinitrotoluene is the most efficient oxidizing substrate examined, with a kcat/KM an order of magnitude higher than those of p-nitrobenzoate, FMN, FAD or riboflavin. Dicoumarol is a potent inhibitor competitive vs. NADH with a Ki of 62 nM. Several compounds containing a carboxyl group are also competitive inhibitors vs. NADH. Yonetani-Theorell analysis of dicoumarol and acetate inhibition indicates that their binding is mutually exclusive, which suggests that the two inhibitors bind to the same site on the enzyme. NAD+ does not exhibit product inhibition and in the absence of an electron acceptor, no isotope exchange between NADH and 32P-NAD+ could be detected. NR catalyzes the 4-electron reduction of nitrobenzene to hydroxylaminobenzene with no optically detectable net formation of the putative two-electron intermediate nitrosobenzene.  相似文献   

3.
2-Aminomuconate, an intermediate in the metabolism of tryptophan in mammals, is also an intermediate in the biodegradation of nitrobenzene by Pseudomonas pseudoalcaligenes JS45. Strain JS45 hydrolyzes 2-aminomuconate to 4-oxalocrotonic acid, with the release of ammonia, which serves as the nitrogen source for growth of the microorganism. As an initial step in studying the novel deamination mechanism, we report here the purification and some properties of 2-aminomuconate deaminase. The purified enzyme migrates as a single band with a molecular mass of 16.6 kDa in 15% polyacrylamide gel electrophoresis under denaturing conditions. The estimated molecular mass of the native enzyme was 100 kDa by gel filtration and 4 to 20% gradient nondenaturing polyacrylamide gel electrophoresis, suggesting that the enzyme consists of six identical subunits. The enzyme was stable at room temperature and exhibited optimal activity at pH 6.6. The Km for 2-aminomuconate was approximately 67 microM, and the Vmax was 125 micromol x min(-1) x mg(-1). The N-terminal amino acid sequence of the enzyme did not show any significant similarity to any sequence in the databases. The purified enzyme converted 2-aminomuconate directly to 4-oxalocrotonate, rather than 2-hydroxymuconate, which suggests that the deamination was carried out via an imine intermediate.  相似文献   

4.
A previously unreported enzymatic activity is described for monomers of the beta 1 beta 1 isoenzyme of human alcohol dehydrogenase that were prepared from dimeric enzyme by freeze-thaw in liquid nitrogen. Whereas the dimeric enzyme has optimal activity at low substrate concentrations (2.5 mM ethanol, 50 microM NAD+; "low Km" activity), the monomer has its highest activity at high substrate concentrations (1.5 M ethanol, 2.5 mM NAD+; "high Km" activity). While the activity of the monomer does not appear to be saturated at 1.5 M ethanol, its maximal activity at this high ethanol concentration exceeds the Vmax of the dimer by about 3-fold. The apparent Km of NAD+ with monomers is 270 microM, and no activity could be detected with nicotinamide mononucleotide as cofactor. During gel filtration the high Km activity elutes at a lower apparent molecular weight position than the dimer. The kinetics of monomer-to-dimer reassociation are consistent with a second-order process with a rate constant of 240 M-1 s-1. The reassociation rate is markedly enhanced by the presence of NAD+. During refolding of beta 1 beta 1 following denaturation in 6 M guanidine hydrochloride, an enzyme species with high Km activity and spectral properties similar to the freeze-thaw monomer is observed, indicating that a catalytically active monomer is an intermediate in the refolding pathway. The enzymatic activity of the monomer implies that the intersubunit contacts of beta 1 beta 1 are not crucial in establishing a catalytically competent enzyme. However, the differences in specific activity and Km between monomer and dimer suggest that dimerization may serve to modulate the catalytic properties.  相似文献   

5.
Pyrococcus furiosus is an anaerobic archaeon that grows optimally at 100 degrees C by the fermentation of carbohydrates yielding acetate, CO2, and H2 as the primary products. If elemental sulfur (S0) or polysulfide is added to the growth medium, H2S is also produced. The cytoplasmic hydrogenase of P. furiosus, which is responsible for H2 production with ferredoxin as the electron donor, has been shown to also catalyze the reduction of polysulfide to H2S (K. Ma, R. N. Schicho, R. M. Kelly, and M. W. W. Adams, Proc. Natl. Acad. Sci. USA 90:5341-5344, 1993). From the cytoplasm of this organism, we have now purified an enzyme, sulfide dehydrogenase (SuDH), which catalyzes the reduction of polysulfide to H2S with NADPH as the electron donor. SuDH is a heterodimer with subunits of 52,000 and 29,000 Da. SuDH contains flavin and approximately 11 iron and 6 acid-labile sulfide atoms per mol, but no other metals were detected. Analysis of the enzyme by electron paramagnetic resonance spectroscopy indicated the presence of four iron-sulfur centers, one of which was specifically reduced by NADPH. SuDH has a half-life at 95 degrees C of about 12 h and shows a 50% increase in activity after 12 h at 82 degrees C. The pure enzyme has a specific activity of 7 mumol of H2S produced.min-1.mg of protein-1 at 80 degrees C with polysulfide (1.2 mM) and NADPH (0.4 mM) as substrates. The apparent Km values were 1.25 mM and 11 microM, respectively. NADH was not utilized as an electron donor for polysulfide reduction. P. furiosus rubredoxin (K(m) = 1.6 microM) also functioned as an electron acceptor for SuDH, and SuDH catalyzed the reduction of NADP with reduced P. furiosus ferredoxin (K(m) = 0.7 microM) as an electron donor. The multiple activities of SuDH and its proposed role in the metabolism of S(o) and polysulfide are discussed.  相似文献   

6.
Two species of Pseudomonas capable of utilizing nitroglycerin (NG) as a sole nitrogen source were isolated from NG-contaminated soil and identified as Pseudomonas putida II-B and P. fluorescens I-C. While 9 of 13 laboratory bacterial strains that presumably had no previous exposure to NG could degrade low concentrations of NG (0.44 mM), the natural isolates tolerated concentrations of NG that were toxic to the lab strains (1.76 mM and higher). Whole-cell studies revealed that the two natural isolates produced different mixtures of the isomers of dinitroglycerol (DNG) and mononitroglycerol (MNG). A monomeric, flavin mononucleotide-containing NG reductase was purified from each natural isolate. These enzymes catalyzed the NADPH-dependent denitration of NG, yielding nitrite. Apparent kinetic constants were determined for both reductases. The P. putida enzyme had a Km for NG of 52 +/- 4 microM, a Km for NADPH of 28 +/- 2 microM, and a Vmax of 124 +/- 6 microM x min(-1), while the P. fluorescens enzyme had a Km for NG of 110 +/- 10 microM, a Km for NADPH of 5 +/- 1 microM, and a Vmax of 110 +/- 11 microM x min(-1). Anaerobic titration experiments confirmed the stoichiometry of NADPH consumption, changes in flavin oxidation state, and multiple steps of nitrite removal from NG. The products formed during time-dependent denitration reactions were consistent with a single enzyme being responsible for the in vivo product distributions. Simulation of the product formation kinetics by numerical integration showed that the P. putida enzyme produced an approximately 2-fold molar excess of 1,2-DNG relative to 1,3-DNG. This result could be fortuitous or could possibly be consistent with a random removal of the first nitro group from either the terminal (C-1 and C-3) positions or middle (C-2) position. However, during the denitration of 1,2-DNG, a 1.3-fold selectivity for the C-1 nitro group was determined. Comparable simulations of the product distributions from the P. fluorescens enzyme showed that NG was denitrated with a 4.6-fold selectivity for the C-2 position. Furthermore, a 2.4-fold selectivity for removal of the nitro group from the C-2 position of 1,2-DNG was also determined. The MNG isomers were not effectively denitrated by either purified enzyme, which suggests a reason why NG could not be used as a sole carbon source by the isolated organisms.  相似文献   

7.
Virginiamycin M1 (VM1), produced by Streptomyces virginiae, is a polyunsaturated macrocyclic lactone antibiotic belonging to the virginiamycin A group. S. virginiae possesses an activity which stereospecifically reduces a 16-carbonyl group of VM1, resulting in antibiotically inactive 16R-dihydroVM1. The corresponding VM1 reductase was purified to homogeneity from crude extracts of S. virginiae in five steps, with 5,650-fold purification and 23% overall yield. The N-terminal amino acid sequence was determined to be MAIKLVIA. The purified enzyme showed an apparent Mr of 73,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and an Mr of 280,000 by native molecular sieve high-performance liquid chromatography, indicating the tetrameric nature of the native enzyme. NADPH served as a coenzyme for the reduction, with a Km value of 0.13 mM, but NADH did not support the reaction, even at a concentration of 5 mM, indicating the NADPH-specific nature of the enzyme. The Km for VM1 was determined to be 1.5 mM in the presence of 2 mM NADPH. In the reverse reaction, only 16R-dihydroVM1, not the 16S-epimer, served as a substrate, with a less than 0.1% overall reaction rate compared to that of the forward reaction, confirming that the VM1 reductase participates solely in VM1 inactivation in vivo.  相似文献   

8.
A K-12 strain of Escherichia coli that overproduces methylenetetrahydrofolate reductase (MetF) has been constructed, and the enzyme has been purified to apparent homogeneity. A plasmid specifying MetF with six histidine residues added to the C terminus has been used to purify histidine-tagged MetF to homogeneity in a single step by affinity chromatography on nickel-agarose, yielding a preparation with specific activity comparable to that of the unmodified enzyme. The native protein comprises four identical 33-kDa subunits, each of which contains a molecule of noncovalently bound flavin adenine dinucleotide (FAD). No additional cofactors or metals have been detected. The purified enzyme catalyzes the reduction of methylenetetrahydrofolate to methyltetrahydrofolate, using NADH as the reductant. Kinetic parameters have been determined at 15 degreesC and pH 7.2 in a stopped-flow spectrophotometer; the Km for NADH is 13 microM, the Km for CH2-H4folate is 0.8 microM, and the turnover number under Vmax conditions estimated for the reaction is 1,800 mol of NADH oxidized min-1 (mol of enzyme-bound FAD)-1. NADPH also serves as a reductant, but exhibits a much higher Km. MetF also catalyzes the oxidation of methyltetrahydrofolate to methylenetetrahydrofolate in the presence of menadione, which serves as an electron acceptor. The properties of MetF from E. coli differ from those of the ferredoxin-dependent methylenetetrahydrofolate reductase isolated from the homoacetogen Clostridium formicoaceticum and more closely resemble those of the NADH-dependent enzyme from Peptostreptococcus productus and the NADPH-dependent enzymes from eukaryotes.  相似文献   

9.
Non-specific acid phosphatase from Candida lipolytica cells was purified 111-fold by chromatography on DEAE-cellulose and gel filtration on Sephadex G-100 and Sepharose 4B. The enzyme is a glycoprotein containing 67% neutral sugars. The molecular mass of the highly purified acid phosphatase was found to be approximately 95 kDa by both SDS-PAGE and gel filtration. The pH and temperature optima were 5.8 and 55 degrees C, respectively. The enzyme was stable at pH values between 3.5 and 5.5 and at temperatures up to 60 degrees C. The purified phosphatase had a Km value of 3.64 mM for p-nitrophenyl phosphate and showed broad substrate specificity.  相似文献   

10.
Adenylylsulfate reductase (EC 1.8.99.2) isolated from Desulfovibrio vulgaris Miyazaki catalyzes electron transfer from dihydroflavin coenzyme (FADH2, FMNH2, or dihydroriboflavin) to adenylyl sulfate (APS), and catalyzes flavin-mediated oxidation of ferrocytochrome c3 with APS. The reaction with FAD as an electron mediator was markedly stimulated in the presence of menadione. Km of the enzyme was about 0.015 mM for riboflavin and FAD in the presence of menadione. Free flavin coenzyme was found to be the normal cellular constituent. These observations suggested that free flavin coenzyme may be a physiological electron carrier for APS reductase, and the enzyme may be called AMP, sulfite:flavin oxidoreductase. Km (APS) of this enzyme is lower than 1 microM. The enzyme is not inhibited by ATP and GTP, but was inhibited by AMP and sulfite. Its extremely low Km (APS) enables this enzyme to reduce any traces of cytosolic APS which is present only at micromolar concentration, and inhibition by sulfite makes this organism utilize an energetically favorable electron acceptor, sulfite, preferentially over APS which is produced from sulfate at the cost of ATP.  相似文献   

11.
Our laboratory has shown that human liver microsomes metabolize the anti-HIV drug 3'-azido-3'-deoxythymidine (AZT) via a P450-type reductive reaction to a toxic metabolite 3'-amino-3'-deoxythymidine (AMT). In the present study, we examined the role of specific human P450s and other microsomal enzymes in AZT reduction. Under anaerobic conditions in the presence of NADPH, human liver microsomes converted AZT to AMT with kinetics indicative of two enzymatic components, one with a low Km (58-74 microM) and Vmax (107-142 pmol AMT formed/min/mg protein) and the other with a high Km (4.33-5.88 mM) and Vmax (1804-2607 pmol AMT formed/min/mg). Involvement of a specific P450 enzyme in AZT reduction was not detected by using human P450 substrates and inhibitors. Antibodies to human CYP2E1, CYP3A4, CYP2C8, CYP2C9, CYP2C19, and CYP2A6 were also without effect on this reaction. NADH was as effective as NADPH in promoting microsomal AZT reduction, raising the possibility of cytochrome b5 (b5) involvement. Indeed, AZT reduction among six human liver samples correlated strongly with microsomal b5 content (r2 = 0.96) as well as with aggregate P450 content (r2 = 0.97). Upon reconstitution, human liver b5 plus NADH:b5 reductase and CYP2C9 plus NADPH:P450 reductase were both effective catalysts of AZT reduction, which was also supported when CYP2A6 or CYP2E1 was substituted for CYP2C9. Kinetic analysis revealed an AZT Km of 54 microM and Vmax of 301 pmol/min for b5 plus NADH:b5 reductase and an AZT Km of 103 microM and Vmax of 397 pmol/min for CYP2C9 plus NADPH:P450 reductase. Our results indicate that AZT reduction to AMT by human liver microsomes involves both b5 and P450 enzymes plus their corresponding reductases. The capacity of these proteins and b5 to reduce AZT may be a function of their heme prothestic groups.  相似文献   

12.
Chitin deacetylase, active in the presence of acetate (96% of the enzymatic activity was retained in the presence of 100 mM sodium acetate), was purified to electrophoretic homogeneity from a culture filtrate of Colletotrichum lindemuthianum (944-fold with a recovery of 4.05%). The enzyme was induced in the medium after the eighth day of incubation simultaneously with the blackening of the medium. The molecular mass of the enzyme was 31.5 kDa and 33 kDa as judged by SDS-PAGE and gel filtration, respectively, suggesting that the enzyme is a single polypeptide. The optimum temperature was 60 degrees C and the optimum pH was 11.5-12.0 when glycol chitin was used as substrate. The enzyme was active toward glycol chitin, partially N-deacetylated water soluble chitin, and chitin oligomers the degrees of polymerization of which were more than four, but was less active with chitin trimer and dimer, and inactive with N-acetylglucosamine. The Km and kcat for glycol chitin were 2.55 mM and 27.1 s-1, respectively, and those for chitin pentamer were 414 microM and 83.2 s-1, respectively. The reaction rates of the enzyme toward glycol chitin and chitin oligomers seemed to follow the Michaelis-Menten kinetics.  相似文献   

13.
1. Human N-acetylgalactosamine-6-sulfate sulfatase (EC 3.1.6.-) from human placenta has been purified more than 3000-fold by gel filtration, ion-exchange and substrate affinity chromatography. The enzyme has a molecular weight of 90 000 by gel filtration chromatography and 85 000 by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Enzyme purified from cultured human skin fibroblasts has similar properties. 2. The tritium-labeled chrondroitin 6-sulfate trisaccharide N-acetylgalactosamine 6-sulfate-(beta, 1-4)-glucuronic acid-(beta, 1-3(-N-acetyl[1-3H]galactosaminitol 6-sulfate as substrate demonstrated a Km of 0.12 mM at pH 4.5. Sulfate was hydrolyzed only from the non-reducing terminal of this disulfated trisaccharide. Hyaluronic acid, dermatan sulfate, chondroitin 4-sulfate, heparin and chondroitin 6-sulfate tetrasaccharide were slightly inhibitory, whereas 6-sulfated pentasaccharides and heptasaccharides were strongly inhibitory. The enzyme dose not hydrolyze sulfate from N-acetylglucosamine 6-sulfate.  相似文献   

14.
1. Triosephosphate isomerase (D-glyceraldehyde-3-phosphate ketoisomerase, EC 5.3.1.1) from human skeletal muscle was purified to homogeneity and crystallized. The crystalline enzyme preparation was resolved on polyacrylamide-gel electrophoresis into three isoenzymes. 2. The molecular weight of the enzyme estimated by gel filtration method was found to be 57,400 +/- 3000. Molecular weight determination under dissociation conditions indicated a dimeric subunit structure of the enzyme. 3. The apparent Km for D-glyceraldehyde-3-phosphate as substrate is 0.34 mM, and for dihydroxyacetone phosphate, 0.61 mM. Vmax of the reaction is, respectively, 7200 and 660 units/mg protein at 25 degrees C and pH 7.5. 4. Molecular and kinetic properties of triosephosphate isomerase from human skeletal muscle are very similar to those of rabbit muscle enzyme.  相似文献   

15.
c-6-L-Fucosyltransferase (alpha1,6FucT; EC 2.4.1.68) from human platelets, the enzyme that is released into serum during coagulation of blood, was purified 100,000-fold. The purification required three sequential chromatographic steps: chromatofocusing, affinity column chromatography on GnGn-Gp(asialo-aglacto-transferrin glycopeptide)-CH-Sepharose, and gel filtration of Sephadex G-200. The final preparation contained a protein that migrated as a single discrete band Mr of 58,000 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under non-reducing conditions, and as a single enzymatically active peak Mr of 58,000 in gel filtration. Although the purified enzyme utilized the biantennary GnGn-Gp as substrate, it was twice as active with the triantennary oligosaccharide when the Man alpha1,3 antenna was substituted with GlcNacbeta1,4. On the other hand the tetraantennary oligosaccharide was not a preferred substrate. The Km values for the substrate asialo-agalactotransferrin-glycopeptide, and GDP-L-fucose were 29 and 28 microM, respectively. The optimum pH of the enzyme was 6.0. The activity of alpha1,6FucT was abolished in the presence of beta-mercaptoethanol. Divalent cations such as Mg2+ and Ca2+ activated, but Cu2+, Zn2+ and Ni2+ strongly inhibited the activity.  相似文献   

16.
The flavin of p-hydroxybenzoate hydroxylase (PHBH) adopts two conformations [Gatti, D. L., Palfey, B. A., Lah, M.-S., Entsch, B., Massey, V., Ballou, D. P., and Ludwig, M. L. (1994) Science 266, 110-114; Schreuder, H. A., Mattevi, A., Obmolova, G., Kalk, K. H., Hol, W. G. J., van der Bolt, F. J. T., and van Berkel, W. J. H. (1994) Biochemistry 33, 10161-10170]. Kinetic studies detected the movement of the flavin from the buried conformation to the exposed conformation caused by the binding of NADPH prior to its reaction with the flavin. The pH dependence of the rate constant for flavin reduction in wild-type PHBH and the His72Asn mutant indicates that the deprotonation of bound p-hydroxybenzoate is also required for flavin movement, and is accomplished by the same internal proton transport network previously found to be involved in substrate oxidation. The linkage of substrate deprotonation to flavin movement constitutes a novel mode of molecular recognition in which the enzyme tests the suitability of aromatic substrates before committing to the catalytic cycle.  相似文献   

17.
2-Aminonumconic 6-semialdehyde is an unstable intermediate in the biodegradation of nitrobenzene and 2-aminophenol by Pseudomonas pseudoalcaligenes JS45. Previous work has shown that enzymes in cell extracts convert 2-aminophenol to 2-aminomuconate in the presence of NAD+. In the present work, 2-aminomuconic semialdehyde dehydrogenase was purified and characterized. The purified enzyme migrates as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a molecular mass of 57 kDa. The molecular mass of the native enzyme was estimated to be 160 kDa by gel filtration chromatography. The optimal pH for the enzyme activity was 7.3. The enzyme is able to oxidize several aldehyde analogs, including 2-hydroxymuconic semialdehyde, hexaldehyde, and benzaldehyde. The gene encoding 2-aminomuconic semialdehyde dehydrogenase was identified by matching the deduced N-terminal amino acid sequence of the gene with the first 21 amino acids of the purified protein. Multiple sequence alignment of various semialdehyde dehydrogenase protein sequences indicates that 2-aminomuconic 6-semialdehyde dehydrogenase has a high degree of identity with 2-hydroxymuconic 6-semialdehyde dehydrogenases.  相似文献   

18.
Crystallographic studies have demonstrated two flavin conformations for p-hydroxybenzoate hydroxylase (PHBH) [Gatti, D. L., Palfey, B. A. , Lah, M. S., Entsch, B., Massey, V., Ballou, D. P., & Ludwig, M. L. (1994) Science 266, 110-114. Schreuder, H. A., Mattevi, A., Obmolova, G., Kalk, K. H., Hol, W. G. J., van der Bolt, F. J. T., & van Berkel, W. J. H. (1994) Biochemistry 33, 10161-10170]. The isoalloxazine ring system of one conformation (the "out" conformation) is significantly more exposed to solvent and is not in position for necessary catalytic reactions, but when the natural substrate is bound to the enzyme, the isoalloxazine is in the correct position (the "in" conformation) for its chemical function. In this study, several aspects of the function of the conformational change in catalysis were explored using the wild-type and Tyr222Phe forms of PHBH substituted with 6-azido FAD. This flavin served as both a spectral probe and a photolabel. The enzyme containing 6-azido FAD was a relatively effective catalyst for the hydroxylation of p-hydroxybenzoate. However, the intermediate reduced 6-azido enzyme was chemically unstable, and a small fraction converted to 6-amino PHBH by the elimination of N2 during each catalytic cycle. The reduction of 6-azido FAD PHBH by NADPH was almost as fast as the reduction of the natural enzyme. The characteristic spectral change caused by NADPH binding prior to hydride transfer strongly suggests that flavin movement from the "in" to the "out" conformation precedes flavin reduction. Irradiation of 6-azido PHBH with visible light covalently labeled proline 293, an active site residue, under conditions in which the flavin adopted the "in" conformation, while no protein labeling occurred under conditions in which the flavin was "out". The labeled protein exchanged substrate and was reduced by NADPH much more slowly than before photolysis. It is therefore concluded that isoalloxazine movement is required for pyridine nucleotide to gain access to the active site and for the exchange of aromatic ligands.  相似文献   

19.
A NAD-dependent enzyme that catalyzes the oxidation of retinal to retinoic acid has been purified to homogeneity from bovine kidney. The procedures used in the purification included ion-exchange chromatography on DEAE-Sepharose, affinity chromatography on Affi-gel blue and chromatography on a Mono-Q anion-exchange column. On the Mono-Q column, the enzyme aldehyde dehydrogenase (ALDH) resolved into two activity peaks designated as ALDH1 and ALDH2. The enzymes ALDH1 and ALDH2 were purified about 114- and 65-fold, respectively. Gel filtration chromatography of the partially purified native enzyme on Sephacryl S-200 HR exhibited a molecular mass of about 108 kDa. Electrophoresis of the purified enzymes under nondenaturing conditions showed a single protein band. However, sodium dodecyl sulfate--polyacrylamide gel electrophorsis indicated three protein bands in the 55, 30, and 22 kDa molecular mass regions. Both enzymes exhibited a broad substrate specificity oxidizing a wide variety of aliphatic and aromatic aldehydes. The ALDH1 enzyme had a pI of 7.45 and exhibited a low Km (6.37 microM) for retinal, while the ALDH2 enzyme was found to have very low Km for acetaldehyde (0.98 microM). Based on its kinetic properties, it is suggested that the ALDH1 enzyme may be the primary enzyme for oxidizing retinal to retinoic acid in bovine kidney.  相似文献   

20.
The human pathogen Staphylococcus aureus does not utilize the glutathione thiol/disulfide redox system employed by eukaryotes and many bacteria. Instead, this organism produces CoA as its major low molecular weight thiol. We report the identification and purification of the disulfide reductase component of this thiol/disulfide redox system. Coenzyme A disulfide reductase (CoADR) catalyzes the specific reduction of CoA disulfide by NADPH. CoADR has a pH optimum of 7.5-8.0 and is a dimer of identical subunits of Mr 49,000 each. The visible absorbance spectrum is indicative of a flavoprotein with a lambdamax = 452 nm. The liberated flavin from thermally denatured enzyme was identified as flavin adenine dinucleotide. Steady-state kinetic analysis revealed that CoADR catalyzes the reduction of CoA disulfide by NADPH at pH 7.8 with a Km for NADPH of 2 muM and for CoA disulfide of 11 muM. In addition to CoA disulfide CoADR reduces 4,4'-diphosphopantethine but has no measurable ability to reduce oxidized glutathione, cystine, pantethine, or H2O2. CoADR demonstrates a sequential kinetic mechanism and employs a single active site cysteine residue that forms a stable mixed disulfide with CoA during catalysis. These data suggest that S. aureus employs a thiol/disulfide redox system based on CoA/CoA-disulfide and CoADR, an unorthodox new member of the pyridine nucleotide-disulfide reductase superfamily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号