首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracellular matrix molecules help regulate many aspects of neural development, including survival, migration, axon growth, and synapse formation by neurons. These same molecules have been shown to modulate regeneration of neurons after injuries. They also regulate the development and differentiation of other neural cells, such as astroglia and Schwann cells. Significant progress has been made recently in characterizing both ECM constituents and their receptors in the nervous system. Extracellular matrix molecules promote cell adhesion, activate intracellular signaling pathways, and modulate the activities of several growth factors and proteins. Our current understanding of the extracellular matrix, its receptors, and its functions in the nervous system are discussed.  相似文献   

2.
Human Mac-2 binding protein (M2BP) was prepared in recombinant form from the culture medium of 293 kidney cells and consisted of a 92 kDa subunit. The protein was obtained in a native state as indicated by CD spectroscopy, demonstrating alpha-helical and beta-type structure, and by protease resistance and immunological analysis. It was highly modified by N- and O-glycosylation but not by glycosaminoglycans. Ultracentrifugation showed non-covalent association into oligomers with molar masses of 1000-1500 kDa. Electron microscopy showed ring-like shapes with diameters of 30-40 nm. M2BP bound in solid-phase assays to collagens IV, V and VI, fibronectin and nidogen, but not to fibrillar collagens I and III or other basement membrane proteins. The protein also mediated adhesion of cell lines at comparable strength with laminin. Adhesion to M2BP was inhibited by antibodies to integrin beta1 subunits but not to alpha2 and alpha6 subunits, RGD peptide or lactose. This distinguishes cell adhesion of M2BP from that of laminin and excludes involvement of lactose-binding galectin-3. Immunological assays demonstrated variable secretion by cultured human cells of M2BP, which was detected in the extracellular matrix of several mouse tissues.  相似文献   

3.
The distribution of NADPH-d activity and NOS-immunoreactivity in the spinal cord of the dog was studied to evaluate the role of nitric oxide in lumbosacral afferent and spinal autonomic pathways. At all levels of the spinal cord examined, NADPH-d staining and NOS-immunoreactivity were present in neurons and fibers in the superficial dorsal horn, dorsal commissure and in neurons around the central canal. Sympathetic preganglionic neurons in the rostral lumbar segments identified by choline acetyl transferase (ChAT) immunoreactivity exhibited prominent NADPH-d and and NOS-immunoreactive staining; whereas the ChAT-immunoreactive parasympathetic preganglionic neurons in the sacral segments were not stained. The most prominent NADPH-d activity in the sacral segments occurred in fibers extending form Lissauer's tract through lamina I along the lateral edge of the dorsal horn to the region of the sacral parasympathetic nucleus. These fibers were prominent in the S1-S3 segments but not in adjacent segments (L5-L7 and Cx1 or in thoracolumbar segments. The NADPH-d fibers were not NOS-immunoreactive, but did overlap with a prominent fiber bundle containing vasoactive intestinal polypeptide immunoreactivity in the sacral spinal cord. These results indicate that nitric oxide may function as a transmitter in thoracolumbar sympathetic preganglionic neurons, but not in sacral parasympathetic preganglionic neurons. The functional significance of the NADPH-d positive, NOS-negative fiber bundle on the lateral edge of the sacral dorsal horn remains to be determined. However, based on anatomical studies in other species it seems reasonable to speculate that the fiber tract represents, in part, visceral afferent projections to the sacral parasympathetic nucleus.  相似文献   

4.
Extracellular concentrations of amino acids in halothane-anesthetized rats were measured using a microdialysis fiber inserted transversely through the dorsal spinal cord at the level of the lumbar enlargement in conjunction with HPLC and ultraviolet detection. After a 2-h washout and a 1-h control period, 20 min of reversible spinal cord ischemia was achieved by the inflation of a Fogarty F2 catheter passed through the femoral artery to the descending thoracic aorta. After 2 h of postischemic reperfusion, animals were transcardially perfused with saline followed by 10% formalin or 4% paraformaldehyde. The glutamate concentration in the dialysate was significantly elevated after 10 min of occlusion and returned to near-baseline during the first 30 min of reperfusion. Taurine was elevated significantly 0.5 h postocclusion and continued to increase throughout the 2 h of reperfusion. Glycine concentrations showed a tendency to be slightly above baseline during the reperfusion period. Glutamine concentrations modestly increased following 2 h of reperfusion. No significant changes in aspartate, asparagine, and serine were detected. In control animals no significant changes in any amino acids were detected. To assess the role of complete spinal ischemia on spinal glutamate release, studies were carried out using cardiac arrest. Twenty minutes after induction of cardiac arrest, the glutamate concentration was increased about 350-400%. In a separate group of animals, spinal cord blood flow (SCBF) and its response to decreased CO2 were measured using a laser probe implanted into the epidural space at the level of the L2 vertebral segment. SCBF decreased to 5-6% of the control during aortic occlusion. After reversible ischemia, marked hyperemia was seen for the first 15 min, followed by hypoperfusion at 60 min. Under control-preischemic conditions a decrease in arterial CO2 content caused a decrease in SCBF of about 25%. This autoregulatory response was almost completely absent when assessed 60 min after a 20-min interval of aortic occlusion. Histopathological analysis of spinal cord tissue from these animals demonstrated heavy neuronal argyrophilia affecting small and medium-sized neurons located predominantly in laminae III-V. These changes corresponded to signs of irreversible damage at the ultrastructural level. Occasionally, small areas of focal necrosis, located in the dorsolateral part of the dorsal horn and anterolateral part of the ventral horn, were found. The results are consistent with a role for glutamate in ischemically induced spinal cord damage and suggest that taurine elevation detected during the early reperfusion period may serve as an important indicator of irreversible spinal cord neuronal damage.  相似文献   

5.
The ability of solid pieces of transplanted human embryonic spinal cord to survive, grow, and integrate with adult rat host spinal cord tissue was investigated. Unilateral cavities were surgically created at vertebral level T12-T13 in 10 athymic nude rats and 5 regular Sprague-Dawley rats. Seven of the athymic rats acutely received a human spinal cord graft, while the remaining 8 rats served as controls, with cavities alone. After 6 months the morphological outcome was evaluated with cresyl violet and with immunohistochemistry using antibodies toward human-specific neurofilament (hNF), human-specific Thy-1 (Thy-1), neurofilament, glial fibrillary acidic protein, serotonin (5-HT), and tyrosine hydroxylase (TH). The in situ morphology of the human embryonic spinal cord was also investigated and compared with grafts that were six months older. Solid human embryonic spinal cord grafts showed a 100% survival rate, grew to fill the volume of the cavity in a noninvasive manner, and expressed human specific antigens 6 months postgrafting. Thy-1 immunoreactivity (IR) was demonstrated up to 8 mm rostral to the graft suggestive of graft-derived fiber outgrowth. hNF-IR fibers and 5-HT- and TH-IR fibers traversed the graft-host border for a few hundred micrometers, respectively. Finally, our findings suggest that grafted solid pieces of human embryonic spinal cord minimize cystic deformations seen in the adult rat spinal cord with a unilateral cavity.  相似文献   

6.
In the present study the distribution of dopamine D2 receptors in rat spinal cord was determined by means of immunocytochemistry using an anti-peptide antibody, directed against the putative third intracellular loop of the D2 receptor and in situ hybridization (ISH) using a [35S]UTP labelled anti-sense riboprobe. With the immunocytochemical technique, labelling was confined to neuronal cell bodies and their proximal dendrites. Strongest labelling was present in the parasympathetic area of the sacral cord and in two sexually dimorphic motor nuclei of the lumbosacral cord, the spinal nucleus of the bulbocavernosus and the dorsolateral nucleus. Moderately labelled cells were present in the intermediolateral cell column, the area around the central canal and lamina I of the dorsal horn. Weak labelling was present in the lateral spinal nucleus and laminae VII and VIII of the ventral horn. Except for the two sexually dimorphic motornuclei of the lumbosacral cord labelled motoneurons were not encountered. With the ISH technique radioactive labelling was present in many neurons, indicating that they contained D2 receptor mRNA. The distribution of these neurons was very similar to the distribution obtained with immunocytochemistry, but with ISH additional labelled cells were detected in laminae III and IV of the dorsal horn, which were never labelled with immunocytochemistry. The present study shows that the D2 receptor is expressed in specific areas of the rat spinal cord. This distribution provides anatomical support for the involvement of D2 receptors in modulating nociceptive transmission and autonomic control. Our data further indicate that D2 receptors are not directly involved in modulating motor functions with the exception, possibly, of some sexual motor functions.  相似文献   

7.
A putative role for bradykinin has been proposed in the processing of sensory information at the level of the spinal cord. Autoradiographic studies have demonstrated the presence of B2 kinin receptor binding sites in superficial laminae of the dorsal horn and a down-regulation of those receptors in rat models of pain injury. In this study, classical immunocytochemistry and confocal microscopy immunofluorescence were used first to localize bradykinin-like immunoreactivity in all major spinal cord segments of naive rats; second, to assess bradykinin-like immunoreactivity changes that occur in animals subjected to various chemical treatments and surgical lesions. High densities of bradykinin-like immunoreactivity were observed in motoneuron of the ventral horn, deeper laminae and nucleus dorsalis of the dorsal horn. Higher magnification of ventral horn showed strong immunostaining of motoneuron perikaryas and their proximal processes. Two types of bradykinin-like immunoreactivity immunostained cellular bodies were observed in deeper laminae of the dorsal horn. These interneurons, morphologically corresponding to islets and antenna-type cells project dendrites to adjacent laminae. Furthermore, numerous strongly marked dendrites, transversally cut, suggest the presence of projection neurons to higher cervical centres. Following unilateral lumbar dorsal rhizotomy (L1-L6) or peripheral lesion of the sciatic nerve, important increases of bradykinin-like immunoreactivity were found in laminae III and IV of the ipsilateral dorsal horn. In contrast, significant decreases of immunodeposits were observed in both cell bodies and numerous dendrites of motoneuron surrounding neuropil. Specific destructions of sensory afferent fibres with capsaicin or selective activation of kallikreins with melittin caused increases of bradykinin-like immunoreactivity in both the dorsal and ventral horns of the spinal cord. These results which demonstrate the cellular localization of bradykinin-like immunoreactivity in both dorsal and ventral horns of the rat spinal cord, further reveal the plasticity of this non-sensory peptidergic system following various chemical and surgical treatments. Hence, these anatomical findings along with earlier functional and receptor autoradiographic studies reinforce the putative role of bradykinin in sensory function.  相似文献   

8.
Human glioma cell line KG-1C contains GM3 ganglioside as its sole glycolipid. The degree of M2590 antibody binding to GM3 was found to be regulated by the cell density; the percentage of positive cells in FACS analysis decreased from approximately 20% to close to none as the cells increased their density from sparse to confluent. The contents of GM3 with different cell densities were consistent, being more than 0.4 micromol/g of the cellular weight, which was high enough to be recognized by the antibody. Trypsin treatment of the cells did not increase antibody reactivity. The extracted GM3 retained its antigenicity, being intensely stained with M2590 on a TLC plate; there was no change in chromatographic mobility either, indicating no modification of its chemical structure. The fluorescent microscope disclosed scattered dot-like staining of GM3, particularly at the periphery of the cells. We were able to expose cryptic GM3 fully within 12 h by dispersion of the cells to a sparse density. Surface labeling of GM3 with the use of limited sodium periodate oxidation of sialylated residue equally labeled GM3 either from the confluent cells or the sparse cells. Disassembly of actin filaments with cytochalasin B (10 microM) partially exposed cryptic GM3 of confluent cells, indicating reversibility of the crypticity. All together, the results indicate that cryptic GM3 actually exists on the cell surface, hidden from the surface not by other molecules but by other mechanisms associated with the cellular architecture. We are beginning to explore the possibility of selective localization of GM3 in small caves or folds of the cell membrane produced upon cell-to-cell contact.  相似文献   

9.
10.
During mammalian development, retinal ganglion cell (RGC) axons from nasal retina cross the optic chiasm midline, whereas temporal retina axons do not and grow ipsilaterally, resulting in a projection of part of the visual world onto one side of the brain while the remaining part is represented on the opposite side. Previous studies have shown that RGC axons in GAP-43-deficient mice initially fail to grow from the optic chiasm to form optic tracts and are delayed temporarily in the midline region. Here we show that this delayed RGC axon exit from the chiasm is characterized by abnormal randomized axon routing into the ipsilateral and contralateral optic tracts, leading to duplicated representations of the visual world in both sides of the brain. Within the chiasm, individual contralaterally projecting axons grow in unusual semicircular trajectories, and the normal ipsilateral turning of ventral temporal axons is absent. These effects on both axon populations suggest that GAP-43 does not mediate pathfinding specifically for one or the other axon population but is more consistent with a model in which the initial pathfinding defect at the chiasm/tract transition zone leads to axons backing up into the chiasm, resulting in circular trajectories and eventual random axon exit into one or the other optic tract. Unusual RGC axon trajectories include chiasm midline recrossing similar to abnormal CNS midline recrossing in invertebrate "roundabout" mutants and Drosophila with altered calmodulin function. This resemblance and the fact that GAP-43 also has been proposed to regulate calmodulin availability raise the possibility that calmodulin function is involved in CNS midline axon guidance in both vertebrates and invertebrates.  相似文献   

11.
BACKGROUND: Intrathecal neostigmine may produce analgesia by itself and may enhance analgesia from spinal clonidine. Before clinical trials, the spinal cord blood flow effects of these drugs alone and in combination should be examined in animals. METHODS: Conscious, nonpregnant ewes with indwelling vascular and thoracic spinal catheters received intrathecal injection of 0.2 or 2 mg neostigmine, 0.2 mg clonidine, or 2 mg neostigmine plus 0.2 mg clonidine. Mean systemic and pulmonary arterial and central venous pressures, heart rate, and cardiac output were monitored, arterial blood was sampled for blood gas tensions and pH, and spinal cord blood flow was determined by colored microsphere injection before and at 15, 60, and 240 min after spinal study drug injection. RESULTS: Neostigmine alone did not affect cardiorespiratory variables or spinal cord blood flow. Intrathecal clonidine alone decreased systemic arterial and central venous pressures, whereas these effects were not observed with addition of neostigmine. Clonidine or neostigmine alone or the combination of clonidine and neostigmine did not affect spinal cord blood flow. CONCLUSIONS: Intrathecal neostigmine alone or in combination with clonidine does not reduce spinal cord blood flow, an important preclinical toxicity issue. These results provide additional support for initial clinical trials of intrathecal neostigmine for analgesia.  相似文献   

12.
The aim of this study was to examine the potency of the antinociceptive effects of the non-steroidal antiinflammatory drug (NSAID), Dexketoprofen Trometamol (the active enantiomer of ketoprofen) on spinal cord nociceptive reflexes. These effects were compared with those of the mu-opioid receptor agonist fentanyl in normal animals. The experiments were performed in male Wistar rats anaesthetised with alpha-chloralose. The nociceptive reflexes were recorded as single motor units in peripheral muscles, activated by mechanical and electrical stimulation. Both dexketoprofen and fentanyl inhibited responses evoked by mechanical and electrical stimulation with doses in the same nanomolar range (dexketoprofen ID50s: 100 and 762 nmol kg-1 and fentanyl: 40 and 51 nmol kg-1, respectively). Dexketoprofen and fentanyl also significantly inhibited wind-up. Since fentanyl has been shown to be some 1000 times more potent than morphine in this type of experiments, we conclude that dexketoprofen has central analgesic actions in normal animals and depresses nociceptive responses with a potency similar to that of mu-opioid agonists.  相似文献   

13.
The vasculature is protected from complement activation by regulatory molecules expressed on endothelial cells. However, complement fixation also occurs on subendothelial extracellular matrix (ECM) in vitro, and is initiated simply by retraction or removal of overlying cells. To investigate mechanisms controlling vascular complement activation, we examined subendothelial ECM for the presence of complement regulatory proteins. Decay-accelerating factor (DAF) was found on both human umbilical vein endothelial cells (HUVEC) and in their ECM; in contrast, membrane cofactor protein was found only on cells. ECM and HUVEC DAF were distinguishable based on several properties. While HUVEC DAF is anchored to cell membranes by a phospholipase C-sensitive glycosylphosphatidylinositol linkage. DAF was removed from ECM only by proteolytic digestion. Cytokines (TNF-alpha, IL-1 beta, IL-4) increased HUVEC DAF expression, but had minimal effect on ECM DAF; in contrast, phorbol 12-myristate 13-acetate (PMA) and wheat germ agglutinin markedly increased DAF on both HUVEC and ECM. The effect of PMA was mediated by activation of protein kinase C. The complement regulatory potential of ECM DAF was assessed by evaluating the effect of DAF-neutralizing antibodies on C3 deposition on HUVEC ECM, as well as on HeLa cell ECM, which had a considerably higher DAF content. DAF blockade enhanced C3 deposition on HeLa ECM, but had no effect on HUVEC ECM. As ECM DAF is likely to be immobile, i.e. able to interact only with C3 convertases forming in the immediate vicinity, its ability to regulate complement activation may be particularly density dependent, and contingent on endothelial-dependent up-regulation.  相似文献   

14.
Previous immunohistochemical studies have shown an abnormal distribution of extracellular matrix (ECM) proteins, including laminin, in the smooth muscle layer of muscularis externa in Hirschsprung's disease (HD) bowel. These findings supported the hypothesis that an abnormal ECM microenvironment may be responsible for the failure of migration and/or development of the neural crest cells in the gut in HD. In order to determine the cause of the abnormality in laminin distribution, solid-phase enzyme-linked immunosorbent assays and immunoblots were used to quantitate the ECM protein laminin and characterize its subunits, respectively, in extracts of the dissected smooth muscle layer of the muscularis externa. In the aganglionic bowel, laminin (median concentration, 32.4 ng/mg of tissue) was found to be present in significantly greater quantity than in both the normoganglionic bowel of the same specimen (median, 17.2 ng/mg, P less than or equal to .05) and the normal bowel of age-matched controls (median, 9.7 ng/mg, P less than or equal to .05). Laminin concentration was also found to be significantly higher in normoganglionic HD bowel (median, 17.2 ng/mg) than in age-matched control specimens (median, 10.8 ng/mg, P less than or equal to .05). No difference was observed in the subunit composition of laminin in HD and control extracts analysed by immunoblot after polyacrylamide gel electrophoresis. This study demonstrates a quantitative abnormality of laminin in the bowel in HD, supporting the hypothesis that "abnormal microenvironment" may have a role in the pathogenesis of HD.  相似文献   

15.
Astrocytes become reactive as a result of various types of lesions and upregulate 2 intermediate filaments, glial fibrillary acidic protein (GFAP), and the developmentally regulated protein vimentin. Young female Sprague-Dawley rats were subjected to a spinal cord contusion at segment T10 using the New York University injury device. Animals were killed at 1, 2, 7, 14, and 30 days postinjury. Horizontal spinal cord sections spanning segments T7-T13 were assessed with antibodies to both intermediate filament proteins. The number of gray matter GFAP-positive astrocytes increased by 2 days postinjury, with segments adjacent (proximal) to the injury site showing greater responses than areas several segments away (distal). By 30 days following injury, astroglial cell numbers returned to normal levels. Vimentin-positive astrocytes also showed a graded proximal/distal response by 2 days following injury. Proximal regions remained significantly higher at 30 days following injury than control animals. Rostral/caudal changes were also evident, with regions caudal to the injury showing significantly higher numbers of vimentin positive astrocytes than those rostral, indicating that gray matter areas caudal to spinal cord injury may undergo more stress following spinal cord injury.  相似文献   

16.
17.
The age-dependent decline in the ability of T-cells to mount a proliferative response both to mitogens and to receptor ligation is due to an age-related defect in signal transduction, since functional expression of receptors displayed by aged T-cells is not reduced. We show here that, although turnover of phosphatidylinositol is not diminished, total inositol-trisphosphate generation decreases after T-cell receptor (TCR) ligation, resulting in reduced flux of calcium. Defective inositol-trisphosphate generation may result from impaired activation of phospholipase C due to decreased tyrosine phosphorylation of this enzyme after ligation of CD3 in aged cells. Proliferation of aged T-cells, which is normally 10-30% of the level of young controls, was enhanced almost tenfold by glutathione or its precursor N-acetyl L-cysteine (NAC), reached levels of young controls and was accompanied by restoration of normal inositol-trisphosphate generation and calcium flux. These findings suggest that the T-cell antigen receptor is associated with at least two types of signal transduction modules. The first depends on synthesis and phosphorylation of phosphatidylinositol that is independent of sulphydryl groups and is not affected by senescence. The second transduction module includes tyrosine phosphorylation and activation of phospholipase C. This module is regulated by glutathione levels and is diminished in aged T-cells, that are deficient in reducing equivalents which support the PLC gamma-dependent generation of inositol-trisphosphate from phosphatidylinositol derivatives. This underlying biochemical defect also occurs earlier in strains which display premature aging due to differences in the H-2 region of MHC I.  相似文献   

18.
The NMR structure of the 98 residue beta-elicitin, cryptogein, which induces a defence response in tobacco, was determined using 15N and 13C/15N labelled protein samples. In aqueous solution conditions in the millimolar range, the protein forms a discrete homodimer where the N-terminal helices of each monomer form an interface. The structure was calculated with 1047 intrasubunit and 40 intersubunit NOE derived distance constraints and 236 dihedral angle constraints for each subunit using the molecular dynamics program DYANA. The twenty best conformers were energy-minimized in OPAL to give a root-mean-square deviation to the mean structure of 0.82 A for the backbone atoms and 1.03 A for all heavy atoms. The monomeric structure is nearly identical to the recently derived X-ray crystal structure (backbone rmsd 0.86 A for residues 2 to 97) and shows five helices, a two stranded antiparallel beta-sheet and an omega-loop. Using 1H,15N HSQC spectroscopy the pKa of the N- and C-termini, Tyr12, Asp21, Asp30, Asp72, and Tyr85 were determined and support the proposal of several stabilizing ionic interactions including a salt bridge between Asp21 and Lys62. The hydroxyl hydrogens of Tyr33 and Ser78 are clearly observed indicating that these residues are buried and hydrogen bonded. Two other tyrosines, Tyr47 and Tyr87, show pKa's > 12, however, there is no indication that their hydroxyls are hydrogen bonded. Calculations of theoretical pKa's show general agreement with the experimentally determined values and are similar for both the crystal and solution structures.  相似文献   

19.
Slime, the extracellular matrix of Physarum plasmodium, is secreted by the exocytosis of a vesicles that contain a slime precursor. Using an antibody raised against biochemically purified slime, we detected the intracellular localization of the slime vesicle. Slime vesicles are abundant in the advancing front of the plasmodium, as confirmed by electron microscopic observation in two different cross-sectional angles. Screening various reagents, we found that rhodamine-phosphatidylethanolamine (Rh-PE) binds specifically to slime in both its intravesicular and extracellular forms, as confirmed by immunoelectron microscopy using an antibody against fluorochrome rhodamine. The plasmodia vitally stained with Rh-PE exhibited dynamic fluorescent patterns during the course of locomotion. The fluorescence was conspicuous at the periphery of the leading pseudopods and oscillated according to the shuttle streaming that accompanied the relaxation and contraction of the periphery; it was intense in the relaxation phase when pseudopods extended, and became weak in the contraction phase when pseudopods contracted. The results collectively mean that the slime vesicles carried by the cytoplasmic streaming accumulated prior to secretion at the advancing margin of the plasmodium.  相似文献   

20.
OBJECTIVE: To develop a self-report instrument that would provide information about the different levels of the disablement process, and that (1) was suitable for persons with spinal cord disease (SCD), (2) could be completed quickly, (3) could be mailed, (4) had acceptable reliability, and (5) would be clinically useful. STUDY DESIGN: Test-retest using a convenience sample. METHODS: Review of the literature and an expert panel were used to develop the instrument. It was mailed to 49,458 individuals in June 1995 and a second mailing was done in August 1995. A subset of 725 individuals who responded to both mailings was used to examine the instrument's test-retest reliability. RESULTS: The instrument has a 4th grade reading level and has questions on causal disease, disease severity, impairment, activities of daily living (including a self-reported version of the Functional Independence Measure, the SRFM), and resource utilization. Individual item test-retest reliability was high for a mailed questionnaire; all kappa coefficients were near or above .60 and most were over .70. Intraclass correlation coefficient for the SRFM was .90 and internal consistency (Chronbach's alpha) was .96. CONCLUSION: This instrument provides a new, rapid way to obtain information relative to the differing levels of the disablement process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号