首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
利用“固体与分子经验电子理论”提出:1)A(?)型多元置换、间隙式固溶体价电子结构计算的模型;z)末知键距结构的键距差(BLD)分析方法;3)BLD分析中解的不唯一性的处理。  相似文献   

2.
陶瓷材料的原子复合与固溶强化   总被引:7,自引:2,他引:5  
陶瓷材料的制备技术正在朝着更加精细和更加微观可控的方向发展,继纳米复合后,原子和分子尺度的复合技术将受到关注,陶瓷材料的固溶强化将成为21世纪提高材料性能的主要方法之一,收集了陶瓷材料的固溶强化的部分实例,归纳了陶瓷材料原子复合的基本方法,旨在提醒陶瓷学界更加重视固溶技术的作用。  相似文献   

3.
依据等原子比和高混合熵的合金设计理念制备TixCrFleCoNiAl多组元圃溶体合金系,研究了该合金系的室温压缩力学性能和显微硬度,并对其强化机制进行了探讨.结果表明:TixCrFeCoNiAl合金系具有很高的强度和优异的综合力学性能,其中T1合金的屈服强度、断裂强度和塑性变形量分别高达2.259 Gpa、3.135 Gpa和23.22%;该合金系具有很高的显微硬度,且随着Ti含量的提高而近线性地提高,T3合金的显微硬度达到HV768;固溶强化机制、纳米相弥散强化机制和品格畸变效应使合金系具有很高的强度和显微硬度.  相似文献   

4.
依据等原子比和高混合熵的合金设计理念制备TixCrFeCoNiAl多组元固溶体合金系,研究了该合金系的室温压缩力学性能和显微硬度,并对其强化机制进行了探讨.结果表明:TixCrFeCoNiAl合金系具有很高的强度和优异的综合力学性能,其中Tl合金的屈服强度、断裂强度和塑性变形量分别高达2.259 GPa、3.135 GPa和23.22%;该合金系具有很高的显微硬度,且随着Ti含量的提高而近线性地提高,T3合金的显微硬度达到HV768;固溶强化机制、纳米相弥散强化机制和晶格畸变效应使合金系具有很高的强度和显微硬度.  相似文献   

5.
PtSi的价电子结构   总被引:1,自引:0,他引:1  
利用固体与分子经验电子理论(EET)理论计算了PtSi的价电子结构。并利用X身线光电子谱(XPS)分析了PtSi薄膜中阶电子的能谱。结果表明,Pt和Si化合形成PiSi以后,Si和Pt的杂阶均向较低杂阶方向移动,化合物中含有较高密度的晶格电子,使PtSi具有良好的导电性。X射线光电子谱测试结果表明,PtSi中价电子的能谱向高结合能方向移动,Pt的5d电子是化合物中重要的成键电子。  相似文献   

6.
文成  莫湾湾  田玉琬  王贵  胡杰珍 《材料导报》2021,35(17):17081-17089
区别于传统的合金材料,高熵合金没有溶质溶剂概念的划分.多主元成分配比造成的晶格畸变、尺寸错配等使高熵合金表现出显著的固溶强化效应,因而可获得优异的力学强度.然而,经典合金固溶强化理论中关于稀释溶质的假设并不适用于高熵合金,相关强化模型无法有效预测其力学强度,这阻碍了高熵合金成分的理性设计及相关应用.近年来,基于高熵合金的成分特点,人们不断探究其固溶强化的起源,尝试建立有效的预测模型,实现合金强度的准确预测,进而指导面向性能需求的高熵合金快速设计,最终推动高熵合金的科学研究和工程应用.本文总结了高熵合金固溶强化问题的研究进展,介绍了三种典型的固溶强化模型,对比分析了各模型的建模思路、预测效果、存在问题及在高熵合金设计中的具体应用,最后对高熵合金固溶强化机制的探索、强化模型的发展及应用进行了展望.  相似文献   

7.
徐文武  邹正光  吴一  龙飞 《材料导报》2007,21(3):108-111
以EET理论为基础,通过建立TiC-Mo-Fe体系金属陶瓷结构模型,分别计算了陶瓷相TiC、环形相(Ti1-xMox)C和金属相Fe的价电子结构,并在此基础上计算了各相间界面原子状态的变化和界面结合情况,以及环形相理论晶格常数值.结果表明:环形相的存在能使金属/陶瓷两相原子状态的突变差异形成渐变过渡;计算获得的环形相的晶格常数对Mo的掺入量不敏感,在x取不同值时仅有很小的变化,相对误差不超过1.2%,环形相与TiC间的原子状态差异非常小,二者界面结合良好;环形相与Fe界面结合明显强于TiC与Fe的界面结合,并且当x=0.5时,这种界面结合最强.  相似文献   

8.
利用电子探针的W-Ni-Cu重合金不平衡凝固与固溶强化进行研究,表明了W-Ni-Cu重合金的断口静貌,微观组织的结构与力学性能,密度有密切关系,阐述了合金断裂的机理,提出了改进合金性能的方法。  相似文献   

9.
本文应用EET理论和三价锕系元素的单键半径R计算公式及杂阶表,对NpH3,PuH3和AmH3等氢化物进行了价电子结构分析。结果表明:每种氢化物都存在六种主要键,键距差ΔD〈0.05,在允许误差范围之内,强键分别为H1-Pu,H1-Np和H1-Am。研究结果为三价锕系元素氢化物的性能分析可提供价电子结构方面的基本数据。  相似文献   

10.
Zn2+固溶堇青石体系的结构与红外辐射特性   总被引:2,自引:0,他引:2  
采用固相法制备了Zn2+固溶堇青石体系红外辐射材料,并对材料的结构及红外辐射性能进行了研究.在2(1-x)MgO@2xZnO@2Al2O3@5SiO2(x=0~0.6)体系中,x≤0.3时,可得到六方结构的堇青石固溶体;x>0.3时,体系中镁铝尖晶石成为主要物相.x=0.2时,样品的红外辐射性能最佳,其法向全波段的辐射率达到0.89,8~14/μm波段的辐射率达到0.91以上.  相似文献   

11.
用“固体与分子经验电子理论”研究了Ni2MnGa合金的价电子结构,研究结果表明,在Ni2MnGa中,Ni的杂化状态为A'种杂化第2阶;Mn的杂化状态为B种杂化第9阶,Ga为A种第9阶杂化。Ni的原子磁矩计算值为3.8666μB十分接近。最强的共价键是Ni-Mn键,其上的共价电子对数为0.577,其次为Ni-Ga键,其价电子对数为0.542,其它键上的共价电子对数小于0.2。  相似文献   

12.
蒙脱土的价电子结构与其同晶置换   总被引:5,自引:0,他引:5  
为研究蒙脱土结构与其性能的关系,根据蒙脱土的晶体结构,设定其结构单元,运用"固体与分子经验电子理论(EET)"对蒙脱土的价电子结构进行计算.研究表明:与理想蒙脱土相比,八面体中0.66个铝被镁同晶置换后蒙脱土结构单元的结合能基本不变,且与氧桥相连的四面体和八面体中主要键的共价电子分布差距变小;蒙脱土3个亚层之间的作用力比片层之间的分子间作用力大两个数量级,证明了蒙脱土的3个亚层结构稳定;在极性介质中可以改变蒙脱土片层间距,但其3个亚层不易分离.  相似文献   

13.
基于EET理论(固体与分子经验电子理论),以经淬火-分配-回火(Q-P-T)工艺热处理的微合金钢为研究对象,计算了其主要组成晶胞的价电子结构,提出表征微合金钢宏观力学性能的新参量:等效共价电子密度和键能统计值,并给出了准确定义及实验验证,从原子成键角度建立微合金钢各组成晶胞价电子结构相关参数与其强塑性的本质关联.研究表明:微合金钢中马氏体组元为硬脆相,对微合金钢力学性能主要起强化作用;奥氏体组元为塑软相,对微合金钢力学性能主要起韧化作用,而微合金钢表现出的宏观力学性能是其各组元晶胞的价电子结构参数与晶胞含量共同决定的结果.等效共价电子密度是其强度的表征,等效共价电子密度越大,微合金钢强度越大;而键能统计值是其塑性的表征,键能统计值越大,微合金钢塑性越大.  相似文献   

14.
测量了快凝Al-Fe-V-Si-Nd合金在648K热处理前后的穆斯堡尔谱。依据固体与分子经验电子理论(EET),计算了快凝Al-Fe-V-Si-Nd合金中Al8Fe4Nd相的介电子结构,并建立了Fe与近邻原子的空间键络。通过与α-Al3(Fe,V)3Si相中Fe原子的价电子的价电子结构的比较分析,从键络的微观角度出发初步探讨了Al-Fe-V-Si-Nd合金在相变前后穆斯堡尔谱参数变化的原因。  相似文献   

15.
Y-Al化合物对铝合金性能影响的价电子理论分析   总被引:2,自引:1,他引:1  
Y是稀土铝合金中常用的添加元素,Y和Al可以形成五种不同的化合物,Y-Al化合物对稀土铝合金的性能有重要的影响.基于固体与分子经验电子理论(EET)和键距差方法(BLD),计算了五种Y-Al化合物的价电子结构和化学键键能,从价电子结构层次探讨了五种Y-Al化合物对稀土铝合金强度、塑性和高温稳定性的影响.计算结果表明,五种Y-Al化合物对铝合金的室温强度都有较好的增强作用;YAl3的塑性最好但稳定性极差;Y3Al2和Y2Al的脆性高,对铝合金的塑、韧性有严重的削弱;YAl2的强度和塑性居中,但稳定性最强,熔点高,对铝合金的室温强度、高温稳定性和高温强度都有显著的贡献.因此,在稀土铝合金的制备中,应促进YAl2相的生成.  相似文献   

16.
J.Y. Cai  X.Z. Yang 《Materials Letters》2008,62(24):3957-3959
In this paper, the valence electron structure and embrittlement of TiAl are studied theoretically based on the empirical electron theory (EET). From the viewpoint of the EET, a model for the space topographic distribution of valence electron structure is proposed. This model can be used to simply explain the embrittlement of TiAl and could be extended to other intermetallic compounds.  相似文献   

17.
The microstructure and mechanical properties of various (Ti1−xWx)C-20 wt.%Ni cermets were investigated, where x varies from 0.07 to 0.3. Homogeneous solid-solution (Ti1−xWx)C powders were prepared by carbothermal reduction via planetary milling of Ti, TiO2, WO3 and carbon powder mixtures. The cermets made of the powders showed a simple core-rim structure consisting of solid-solution carbides. The hardness of the solid-solution cermets is somewhat lower than that of conventional cermets, but they show greater toughness. The transverse rupture strength increases with increasing W content.  相似文献   

18.
We describe the copper valence in superconductors based on our arguments on La2O3 crystal structure. In order to explain the two oxygen sites in La2O3, it has been supposed that O II 1− ions occupy the tetrahedral site while O II 2− occupy the octahedral site. Oxygen ions in tetrahedral site form a covalent bond with lanthanum, which can be written [LaO]1+. Considering the chemical and crystallographic properties of Tl and Bi compounds, [TlO]1+ and [BiO]1+ groups appear as defined by strong covalent bonds between Bi or Tl and O. This leads to the supposition that the four oxygen ions which coordinate to copper in Tl and Bi copper oxide-based superconductors are O II 1− ions. The bivalent character of copper is then obtained through covalent bonds. For La2−x Sr x O4 compounds, copper is supposed to have valence three, but spectroscopic studies point out bivalent copper. We show that krypton shell of Sr is responsible for the lack of one unit of valence as expected from krypton compounds for example KrF2.  相似文献   

19.
Performance enhancement of structural materials in extreme radiation environments has been actively investigated for many decades. Traditional alloys, such as steel, brass and aluminum alloys, normally contain one or two principal element(s) with a low concentration of other elements. While these exist in either a mixture of metallic phases (multiple phases) or in a solid solution (single phase), limited or localized chemical disorder is a common characteristic of the main matrix. Fundamentally different from traditional alloys, recently developed single-phase concentrated solid-solution alloys (CSAs) contain multiple elemental species in equiatomic or high concentrations with different elements randomly arranged on a crystalline lattice. Due to the lack of ordered elemental arrangement in these CSAs, they exhibit significant chemical disorder and unique site-to-site lattice distortion. While it is well recognized in traditional alloys that minor additions lead to enhanced radiation resistance, it remains unclear in CSAs how atomic-level heterogeneity affects defect formation, damage accumulation, and microstructural evolution. These knowledge gaps have acted as roadblocks to the development of future-generation energy technology. CSAs with a simple crystal structure, but complex chemical disorder, are unique systems that allow us, through replacing principal alloying elements and modifying concentrations, to study how compositional complexity influences defect dynamics, and to bridge the knowledge gaps through understanding intricate electronic- and atomic-level interactions, mass and energy transfer processes, and radiation resistance performance. Recent advances in defect dynamics and irradiation performance of CSAs are reviewed, intrinsic chemical effects on radiation performance are discussed, and direction for future studies is suggested.  相似文献   

20.
Based on the empirical electron theory (EET) of solids and molecules, the valence electron structures (VES) of MoSi2-based solid solution alloys have been analyzed using the average atom model. The results showed that with the increase of the W addition content, the hybridization steps of Mo and Si atom of the alloys occurred in C3 and 1, respectively. The hybridization step of W was always C5. The bond energy of the main bond branch, the covalence electron number on the strongest bond and the percentage of the total covalent electron numbers accounting for the total valence electron number of (Mo1−x, Wx)Si2 solid solutions increased with the increase of W addition content. These suggested that the addition of W would increase the melting point, hardness and strength and decrease the fracture toughness of (Mo1−x, Wx)Si2 solid solutions. Based on those results, MoSi2-based solid solution alloys were manufactured, and the results of the experiments were in accordance with those of the theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号