首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Discrete optimization of truss structures is a hard computing problem with many local minima. Metaheuristic algorithms are naturally suited for discrete optimization problems as they do not require gradient information. A recently developed method called Jaya algorithm (JA) has proven itself very efficient in continuous engineering problems. Remarkably, JA has a very simple formulation and does not utilize algorithm-specific parameters. This study presents a novel JA formulation for discrete optimization of truss structures under stress and displacement constraints. The new algorithm, denoted as discrete advanced JA (DAJA), implements efficient search mechanisms for generating new trial designs including discrete sizing, layout and topology optimization variables. Besides the JA’s basic concept of moving towards the best design of the population and moving away from the worst design, DAJA tries to form a set of descent directions in the neighborhood of each candidate designs thus generating high quality trial designs that are very likely to improve current population. Results collected in seven benchmark problems clearly demonstrate the superiority of DAJA over other state-of-the-art metaheuristic algorithms and multi-stage continuous–discrete optimization formulations.  相似文献   

2.
This paper proposes a stepwise structural design methodology where the component layout and the supporting frame structure is sequentially found using global search algorithm and topology optimization. In the component layout design step, the genetic algorithm is used to handle system level multiobjective problem where the optimal locations of multiple components are searched. Based on the layout design searched, a new Topology Optimization method based on Morphing Mesh technique (TOMM) is applied to obtain the frame structure topology while adjusting the component locations simultaneously. TOMM is based on the SIMP method with morphable FE mesh, and component relocation and frame design is simultaneously done using two kinds of design variables: topology design variables and morphing design variables. Two examples are studied in this paper. First, TOMM method is applied to a simple cantilever beam problem to validate the proposed design methodology and justify inclusion of morphing design variables. Then the stepwise design methodology is applied to the commercial Boeing 757 aircraft wing design problem for the optimal placement of multiple components (subsystems) and the optimal supporting frame structure around them. Additional constraint on the weight balance is included and the corresponding design sensitivity is formulated. The benefit of using the global search algorithm (genetic algorithm) is discussed in terms of finding the global optimum and independency of initial design guess. It has been proved that the proposed stepwise method can provide innovative design insight for complex modern engineering systems with multi-component structures.  相似文献   

3.
This paper focuses on discrete sizing optimization of frame structures using commercial profile catalogs. The optimization problem is formulated as a mixed-integer linear programming (MILP) problem by including the equations of structural analysis as constraints. The internal forces of the members are taken as continuous state variables. Binary variables are used for choosing the member profiles from a catalog. Both the displacement and stress constraints are formulated such that for each member limit values can be imposed at predefined locations along the member. A valuable feature of the formulation, lacking in most contemporary approaches, is that global optimality of the solution is guaranteed by solving the MILP using branch-and-bound techniques. The method is applied to three design problems: a portal frame, a two-story frame with three load cases and a multiple-bay multiple-story frame. Performance profiles are determined to compare the MILP reformulation method with a genetic algorithm.  相似文献   

4.
This paper deals with joint penalization and material selection in frame topology optimization. The models used in this study are frame structures with flexible joints. The problem considered is to find the frame design which fulfills a stiffness requirement at the lowest structural weight. To support topological change of joints, each joint is modelled as a set of subelements. A set of design variables are applied to each beam and joint subelement. Two kinds of design variables are used. One of these variables is an area-type design variable used to control the global element size and support a topology change. The other variables are length ratio variables controlling the cross section of beams and internal stiffness properties of the joints. This paper presents two extensions to classical frame topology optimization. Firstly, penalization of structural joints is presented. This introduces the possibility of finding a topology with less complexity in terms of the number of beam connections. Secondly, a material interpolation scheme is introduced to support mixed material design.  相似文献   

5.
Topology optimization methods using discrete elements such as frame elements can provide useful insights into the underlying mechanics principles of products; however, the majority of such optimizations are performed under deterministic conditions. To avoid performance reductions due to later-stage environmental changes, variations of several design parameters are considered during the topology optimization. This paper concerns a reliability-based topology optimization method for frame structures that considers uncertainties in applied loads and nonstructural mass at the early conceptual design stage. The effects that multiple criteria, namely, stiffness and eigenfrequency, have upon system reliability are evaluated by regarding them as a series system, where mode reliabilities can be evaluated using first-order reliability methods. Through numerical calculations, reliability-based topology designs of typical two- or three-dimensional frames are obtained. The importance of considering uncertainties is then demonstrated by comparing the results obtained by the proposed method with deterministic optimal designs.  相似文献   

6.
Optimal analytical Michell frame structures have been extensively used as benchmark examples in topology optimization, including truss, frame, homogenization, density and level-set based approaches. However, as we will point out, partly the interpretation of Michell’s structural continua as discrete frame structures is not accurate and partly, it turns out that limiting structural topology to frame-like structures is a rather severe design restriction and results in structures that are quite far from being stiffness optimal. The paper discusses the interpretation of Michell’s theory in the context of numerical topology optimization and compares various topology optimization results obtained with the frame restriction to cases with no design restrictions. For all examples considered, the true stiffness optimal structures are composed of sheets (2D) or closed-walled shell structures (3D) with variable thickness. For optimization problems with one load case, numerical results in two and three dimensions indicate that stiffness can be increased by up to 80 % when dropping the frame restriction. For simple loading situations, studies based on optimal microstructures reveal theoretical gains of +200 %. It is also demonstrated how too coarse design discretizations in 3D can result in unintended restrictions on the design freedom and achievable compliance.  相似文献   

7.
We study the ‘classical’ discrete, solid-void or black-and-white topology optimization problem, in which minimum compliance is sought, subject to constraints on the available material resource. We assume that this problem is solved using methods that relax the discreteness requirements during intermediate steps, and that the associated programming problems are solved using sequential approximate optimization (SAO) algorithms based on duality. More specifically, we assume that the advantages of the well-known Falk dual are exploited. Such algorithms represent the state-of-the-art in (large-scale) topology optimization when multiple constraints are present; an important example being the method of moving asymptotes (MMA).We depart by noting that the aforementioned SAO algorithms are invariably formulated using strictly convex subproblems. We then numerically illustrate that strictly concave constraint functions, like those present in volumetric penalization, as recently proposed by Bruns and co-workers, may increase the difficulty of the topology optimization problem when strictly convex approximations are used in the SAO algorithm. In turn, volumetric penalization methods are of notable importance, since they seem to hold much promise for generating predominantly solid-void or discrete designs.We then argue that the nonconvex problems we study may in some instances efficiently be solved using dual SAO methods based on nonconvex (strictly concave) approximations which exhibit monotonicity with respect to the design variables.Indeed, for the topology problem resulting from SIMP-like volumetric penalization, we show explicitly that convex approximations are not necessary. Even though the volumetric penalization constraint is strictly concave, the maximum of the resulting dual subproblem still corresponds to the optimum of the original primal approximate subproblem.  相似文献   

8.
The problem of optimizing truss structures in the presence of uncertain parameters considering both continuous and discrete design variables is studied. An interval analysis based robust optimization method combined with the improved genetic algorithm is proposed for solving the problem. Uncertain parameters are assumed to be bounded in specified intervals. The natural interval extensions are employed to obtain explicitly a conservative approximation of the upper and lower bounds of the structural response, and hereby the bounds of the objective function and the constraint function. This way the uncertainty design may be performed in a very efficient manner in comparison with the probabilistic analysis based method. A mix-coded genetic algorithm (GA), where the discrete variables are coded with binary numbers while the continuous variables are coded with real numbers, is developed to deal with simultaneously the continuous and discrete design variables of the optimization model. An improved differences control strategy is proposed to avoid the GA getting stuck in local optima. Several numerical examples concerning the optimization of plane and space truss structures with continuous, discrete or mixed design variables are presented to validate the method developed in the present paper. Monte Carlo simulation shows that the interval analysis based optimization method gives much more robust designs in comparison with the deterministic optimization method.  相似文献   

9.
在进行MRI(magneticresonanceimaging)超导主磁体的设计时常采用优化设计的方法,将各设计参数看作连续变量处理,但实际上很多参数是离散变量,为了更符合工程实际,将超导MRI主磁体的设计作为一个含有离散变量的全局优化问题。建立了适用于多种超导MRI主磁体结构的数学模型,包括设计变量、目标函数、约束条件等,选用了适用于MRI超导主磁体优化设计的含有离散变量的模拟退火算法进行设计。算例结果表明,本文选取的数学模型和优化算法是有效的,能够达到超导MRI主磁体设计的要求。  相似文献   

10.
Topology optimization using a dual method with discrete variables   总被引:7,自引:1,他引:6  
This paper deals with topology optimization of continuous structures in static linear elasticity. The problem consists in distributing a given amount of material in a specified domain modelled by a fixed finite element mesh in order to minimize the compliance. As the design variables can only take two values indicating the presence or absence of material (1 and 0), this problem is intrinsicallydiscrete. Here, it is solved by a mathematical programming method working in the dual space and specially designed to handle discrete variables. This method is very wellsuited to topology optimization, because it is particularly efficient for problems with a large number of variables and a small number of constraints. To ensure the existence of a solution, the perimeter of the solid parts is bounded. A computer program including analysis and optimization has been developed. As it is specialized for regular meshes, the computational time is drastically reduced. Some classical 2-D and new 3-D problems are solved, with up to 30,000 design variables. Extensions to multiple load cases and to gravity loads are also examined.  相似文献   

11.
In this paper, structural optimization with discrete variables in engineering design is modeled and investigated as a zero-one programming problem. The zero-one programming problem is first reformulated as an equivalent continuous problem through replacing the zero-one constraints by complementarity constraints, then as an equivalent ordinary nonlinear programming problem with the help of the NCP(nonlinear complementarity problem) function. Furthermore, an aggregate function method is introduced with the aim to simplify computation in the following augmented Lagrangian method. Numerical experiments on discrete optimum design showed the proposed method is promising.  相似文献   

12.
The design of laminated structures is highly tailorable owing to the large number of available design variables, thereby requiring an optimization method for effective design. Furthermore, in practice, the design problem translates to a discrete global optimization problem which requires a robust optimization method such as the genetic algorithm. In this paper, the genetic algorithm, based on the real variable coding, is applied to the strain energy minimization of rectangular laminated composite plates. The results for both a point load and uniformly distributed load compare well with those achieved using trajectory methods for continuous global optimization.  相似文献   

13.
A pseudo-discrete rounding method for structural optimization   总被引:3,自引:0,他引:3  
A new heuristic method aimed at efficiently solving the mixed-discrete nonlinear programming (MDNLP) problem in structural optimization, and denotedselective dynamic rounding, is presented. The method is based on the sequential rounding of a continuous solution and is in its current form used for the optimal discrete sizing design of truss structures. A simple criterion based on discrete variable proximity is proposed for selecting the sequence in which variables are to be rounded, and allowance is made for both upward and downward rounding. While efficient in terms of the required number of function evaluations, the method is also effective in obtaining a low discrete approximation to the global optimum. Numerical results are presented to illustrate the effectiveness and efficiency of the method.  相似文献   

14.
This paper deals with topology optimization of load carrying structures defined on a discretized design domain where binary design variables are used to indicate material or void in the various finite elements. The main contribution is the development of two iterative methods which are guaranteed to find a local optimum with respect to a 1-neighbourhood. Each new iteration point is obtained as the optimal solution to an integer linear programming problem which is an approximation of the original problem at the previous iteration point. The proposed methods are quite general and can be applied to a variety of topology optimization problems defined by 0-1 design variables. Most of the presented numerical examples are devoted to problems involving stresses which can be handled in a natural way since the design variables are kept binary in the subproblems.  相似文献   

15.
This study presents a comparison of global optimization algorithms applied to an industrial engineering optimization problem. Three global stochastic optimization algorithms using continuous variables, i.e. the domain elimination method, the zooming method and controlled random search, have been applied to a previously studied ride comfort optimization problem. Each algorithm is executed three times and the total number of objective function evaluations needed to locate a global optimum is averaged and used as a measure of efficiency. The results show that the zooming method, with a proposed modification, is most efficient in terms of number of objective function evaluations and ability to locate the global optimum. Each design variable is thereafter given a set of discrete values and two optimization algorithms using discrete variables, i.e. a genetic algorithm and simulated annealing, are applied to the discrete ride comfort optimization problem. The results show that the genetic algorithm is more efficient than the simulated annealing algorithm for this particular optimization problem.  相似文献   

16.
We consider the minimum compliance topology design problem with a volume constraint and discrete design variables. In particular, our interest is to provide global optimal designs to a challenging benchmark example proposed by Zhou and Rozvany. Global optimality is achieved by an implementation of a local branching method in which the subproblems are solved by a special purpose nonlinear branch-and-cut algorithm. The convergence rate of the branch-and-cut method is improved by strengthening the problem formulation with valid linear inequalities and variable fixing techniques. With the proposed algorithms, we find global optimal designs for several values on the available volume. These designs can be used to validate other methods and heuristics for the considered class of problems.  相似文献   

17.
This paper explores a framework for topology optimization of multi-component sheet metal structures, such as those often used in the automotive industry. The primary reason for having multiple components in a structure is to reduce the manufacturing cost, which can become prohibitively expensive otherwise. Having a multi-component structure necessitates re-joining, which often comes at sacrifices in the assembly cost, weight and structural performance. The problem of designing a multi-component structure is thus posed in a multi-objective framework. Approaches to solve the problem may be classified into single and two stage approaches. Two-stage approaches start by focusing solely on structural performance in order to obtain optimal monolithic (single piece) designs, and then the decomposition into multiple components is considered without changing the base topology (identical to the monolithic design). Single-stage approaches simultaneously attempt to optimize both the base topology and its decomposition. Decomposition is an inherently discrete problem, and as such, non-gradient methods are needed for single-stage and second stage of two-stage approaches. This paper adopts an implicit formulation (level-sets) of the design variables, which significantly reduces the number of design variables needed in either single or two stage approaches. The number of design variables in the formulation is independent from the meshing size, which enables application of non-gradient methods to realistic designs. Test results of a short cantilever and an L-shaped bracket studies show reasonable success of both single and two stage approaches, with each approach having different merits.  相似文献   

18.
The boom structure is a key component of giant boom cranes, and the stability-ensured topology optimization is critical to its lightweight design. The finite difference method, direct differentiation or adjoint method needs many time-consuming nonlinear analyses for this problem with a large number of design variables and constraints, and the last two methods are difficult to implement in off-the-shelf softwares. To overcome these challenges, this work first defines a global stability index to measure the global stability of the whole structure, and a compression member stability index to identify the buckling of compression members. Numerical and experimental verifications of these two stability indices are conducted by analyzing a simple three-dimensional frame. Next, the anti-buckling mechanism of boom structures is analyzed to develop the precedence order of freezing relative web members. The stability indices and the freezing measure are then utilized as a part of a novel Stability-Ensured Soft Kill Option (SSKO) algorithm, built upon the existing Soft Kill Option (SKO) method. The objective is to minimize the discrepancy between structural volume and predetermined target volume, while the global stability and stress are regarded as constraints. Lastly, the SSKO algorithm with different scenarios is applied to topology optimization problems of four-section frames and a ring crane boom; in both cases the consistent and stable topologies exhibit applicability of the proposed algorithm.  相似文献   

19.
In this paper, optimum three-dimensional microstructures derived in explicit analytical form by Gibianski and Cherkaev (1987) are used for topology optimization of linearly elastic three-dimensional continuum structures subjected to a single case of static loading. For prescribed loading and boundary conditions, and subject to a specified amount of structural material within a given three-dimensional design domain, the optimum structural topology is determined from the condition of maximum integral stiffness, which is equivalent to minimum elastic complicance or minimum total elastic energy at equilibrium.The use of optimum microstructures in the present work renders the local topology optimization problem convex, and the fact that local optima are avoided implies that we can develop and present a simple sensitivity based numerical method of mathematical programming for solution of the complete optimization problem.Several examples of optimum topology designs of three-dimensional structures are presented at the end of the paper. These examples include some illustrative full three-dimensional layout and topology optimization problems for plate-like structures. The solutions to these problems are compared to results obtained earlier in the literature by application of usual two-dimensional plate theories, and clearly illustrate the advantage of the full three-dimensional approach.  相似文献   

20.
Numerous computer optimization techniques have been developed and applied primarily to the design of structures composed of discrete elements. Continuous surface structures have been optimized primarily by methods based upon the differential or integral calculus (e.g. the calculus of variations). However, the determination of the optimal shape of continuous surface structures can also be approached by algebraic methods more suitable for digital computation. If the coordinates of the middle surface of a shell are expressed by a finite polynomial series, an optimization problem in a finite set of discrete variables results. In the present work, this method is applied to a particular example of a shell of revolution: a natural draft cooling tower. A simple preliminary design model is formulated in order to evaluate the potential savings due to numerical optimization, and the resulting nonlinear programming problem is solved by iterated linear programming. The results indicate that the method is feasible and that significant savings might be attainable by computerized shape optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号