首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study carries out the three dimensional free vibration analysis of an adhesively bonded corner joint and investigates the effect of an additional horizontal support to the adhesive corner joint with single support on the first ten natural frequencies and mode shapes. In the presence of a horizontal support the effects of the vertical support length, the adhesive thickness, the plate thickness, and the joint length on the natural frequencies and modal strain energies of the adhesive joint were also investigated using the back-propagation Artificial Neural Network (ANN) method and the finite element method. The natural frequencies and modal strain energies increased with increasing plate thickness, whereas an adverse effect was observed for increasing joint length. Both horizontal and vertical support lengths exhibited similar effects but the adhesive thickness had a negligible effect. The plate thickness and the joint length are dominant geometrical parameters in comparison with both horizontal and vertical support lengths. The proposed ANN models were combined with the Genetic Algorithm in order to determine the optimal corner joint in which the maximum natural frequency and minimum elastic modal strain energy are achieved for each natural frequency and mode shape of the adhesive corner joint and the optimal dimensions were given versus one geometrical parameter.  相似文献   

2.
This study investigates the three-dimensional free vibration behaviour of an adhesively-bonded corner joint with single support. The modulus of elasticity, Poisson's ratio and density of adhesive were found to have negligible effects on the first 10 natural frequencies and mode shapes of the corner joint. The effects of the geometrical parameters, such as support length, plate thickness, adhesive thickness and joint length, on the natural frequencies, mode shapes and modal strain energies of the adhesive joint were also investigated using both the finite element method and the back-propagation artificial neural network (ANN) method. The free vibration and stress analyses were carried out for the corner joints with various random geometrical parameters so that a suitable ANN model could be trained successfully. The support length, plate thickness and joint length all played important roles in the natural frequencies, mode shapes and modal strain energies of the corner joint, whereas the adhesive thickness for the range of adhesive thickness studied had only a minor effect. The Genetic Algorithm was also combined with the present ANN models in order to determine the optimum geometrical dimensions which satisfied the maximum natural frequency and minimum modal strain energy conditions for each natural frequency and mode shape of the adhesively-bonded corner joint.  相似文献   

3.
In this study, Genetic Algorithms (GAs) combined with the proposed neural networks were implemented to the free vibration analysis of an adhesively bonded double containment cantilever joint with a functionally graded plate. The proposed neural networks were trained and tested based on a limited number of data including the natural frequencies and modal strain energies calculated using the finite element method. GA evaluates a value generated iteratively by an objective function and this value is calculated by the finite element method. The iteration process restricts us apparently to use directly the finite element method in our multi-objective optimisation problem in which the natural frequency is maximised and the corresponding modal strain energy is minimised. The proposed neural networks were used accurately to predict the natural frequencies and modal strain energies instead of calculating directly them by using the finite element method. Consequently, the computation time and efforts were reduced considerably. The adhesive joint was observed to tend vertical bending modes and torsional modes. Therefore, the multi-objective optimisation problem was limited to only the first mode which appeared as a bending mode. The effects of the geometrical dimensions and the material composition variation through the plate thickness were investigated. As the material composition of the horizontal plate becomes ceramic rich, both natural frequency and modal strain energy of the adhesive joint increased regularly. The plate length and plate thickness were more effective geometrical design parameters whereas the support length and thickness were less effective. However, the adhesive thickness had a small effect on the optimal design of the adhesive joint as far as the natural frequencies and modal strain energies are concerned. The distributions of optimal solutions were also presented for the adhesive joints with fundamental joint lengths and material compositions in reference to their natural frequencies and corresponding modal strain energies.  相似文献   

4.
In this study, the three-dimensional free vibration analysis of an adhesively bonded functionally graded tubular single lap joint was carried out using the finite element method. The functionally graded tubes of the adhesive joint are composed of ceramic (Al2O3) and metal (Ni) phases varying through the tube thickness. The adhesive material properties, such as modulus of elasticity, Poisson's ratio, and density were found to have negligible effect on the first ten natural frequencies and mode shapes of the adhesive joint. The optimal design parameters of the adhesive joint, such as overlap length, inner radius of the inner tube, outer and inner tube thicknesses, and the through-the-thickness material composition variation were searched using both the artificial neural networks (ANNs) and the genetic algorithms (GAs). For this purpose, the natural frequencies and modal strain energy values were calculated for an adhesive joint with random geometrical properties and material compositions through the tube thicknesses, and were used for training the proposed artificial neural network models. The outer tube thickness, the inner tube-inner radius, and the compositional gradient exponent had considerable effect on the natural frequencies, mode shapes, and modal strain energies of the functionally graded tubular single lap joint, whereas the overlap length and the inner tube thickness had a minor effect. The GAs integrated with ANNs was employed to determine optimal design parameters satisfying both maximum natural frequency and minimum modal strain energy conditions for each natural mode of the tubular adhesive joint.  相似文献   

5.
This study comprises the stress and stiffness analyses of a second type of modified double containment corner joint which is presented as an alternative to two previous designs in order to reduce the effect of bending moment on the adhesive stresses. Plates are bonded at a right angle into slots of a corner support and the vertical slot depth is kept as large as possible in order to produce a joint which is stiffer and sustainable to high loads, provided that high stress concentration regions are under compression, and to obtain savings of the corner joint volume. The analyses were carried out using the finite element method and assuming that the adhesive, plates, and corner support had linear-elastic properties. Since the geometry of the adhesive free end has an important effect on the high adhesive stresses, the adhesive spew fillet arising from the applied pressure to provide the physical contact between the adhesive and plates was taken into account. In order to show the effect of boundary and loading conditions on the stresses and the overall joint stiffness, the joint was analysed for three loading conditions: two linear and a bending moment. It was found that the loading in the normal direction to the horizontal plate plane at its free end was the most critical and that maximum stress concentrations occurred around the adhesive free ends. A detailed study of adhesive stresses showed that the peak adhesive stresses occurred at the lower free end of the left vertical adhesive layer-slot interface for this loading condition and bending moment, respectively, and at the lower free end of the right vertical adhesive layer-slot interface for the loading condition in another direction. In addition, the effects of geometrical dimensions of the corner support, such as the horizontal and vertical support lengths, slot depth, and support thickness, on the peak adhesive stresses and on the overall joint stiffness were investigated and it was found that whereas the support lengths had a considerable effect, the effect of the slot depth and support thickness was negligible. The dimensions of the corner support were determined relative to the plate thickness based on the results.  相似文献   

6.
In this study, the stress and stiffness analyses of corner joints with a single corner support, consisting of two plates, one of which plain and the other bent at right angles, have been carried out using the finite element method. It was assume that the plates and adhesive had linear elastic properties. Corner joints without a fillet at the free ends of the adhesive layer were considered. The joint support was analysed under three loading conditions, two linear and one bending moment. In the stress analysis, it was found that for loading in the y-direction and by bending moment, the maximum stresses occurred around the lower end of the vertical adhesive layer/ vertical plate interface; for loading in the x-direction, the maximum stresses occurred around the right free end of the horizontal adhesive layer/vertical plate interface. The effects of upper support length, support taper length and adhesive thickness on the maximum stresses have been investigated. Since the peel stresses are critical for this type of joint, a second corner joint with double corner support (i.e., one in which the horizontal plate is reinforced by a support that is an extension of the vertical plate) was investigated which showed considerable decreases in the stresses, particularly peel stresses. A third type of corner joint with single corner support plus an angled reinforcement member was investigated as an alternative to the previous two configurations. It was found that increasing the length and particularly the thickness of the angled reinforcement reduced the high peel stresses around the lower free end of the adhesive/vertical plate interface, but resulted in higher compressive stresses. In the stiffness analysis, the effects of the geometry of the joints, relative stiffness of adhesive/adherends and adhesive thickness were investigated under three loading conditions. For three types of corner joint, results were compared and recommended designs were determined based on the overall static stiffness of the joints and on the stress analysis.  相似文献   

7.
When adhesively bonded joints are subjected to large displacements, the small strain-small displacement (linear elasticity) theory may not predict the adhesive or adherend stresses and deformations accurately. In this study, a geometricaly non-linear analysis of three adhesively bonded corner joints was carried out using the incremental finite element method based on the small strain-large displacement (SSLD) theory. The first one, a corner joint with a single support, consisted of a vertical plate and a horizontal plate whose left end was bent at right angles and bonded to the vertical plate. The second corner joint, with a double support, had two plates whose ends were bent at right angles and bonded to each other. The final corner joint, with a single support plus angled reinforcement, was a modification of the first corner joint. The analysis method assumes that the joint members, such as the support, plates, and adhesive layers, have linear elastic properties. Since the adhesive accumulations (spew fillets) around the adhesive free ends have a considerable effect on the peak adhesive stresses, they were taken into account. The joints were analyzed for two different loading conditions: one loading normal to the horizontal plate plane Py and the other horizontal loading at the horizontal plate free edge Px. In addition, three corner joints were analyzed using the finite clement method based on the small strain-small displacement (SSSD) theory. In predicting the effect of the large displacements on the stress and deformation states of the joint members, the capabilities of both analyses were compared. Both analyses showed that the adhesive free ends and the outer fibres of the horizontal and vertical plates were subjected to stress concentrations. The peak stresses appeared at the slot corners inside the adhesive fillets and at the horizontal and vertical plate outer fibres corresponding to the locations where the horizontal and vertical adhesive fillets finished. The SSLD analysis predicted that the displacement components and the peak adhesive and plate stress components would show a non-linear variation for the loading condition Px, whereas the SSSD analysis showed smaller stress variations proportional to the applied load. However, both the SSLD and the SSSD analyses predicted similar displacement and stress variations for the loading condition Py. Therefore, the stress and deformation states of the joint members are dependent on the loading conditions, and in the case of large displacements, the SSSD analysis can be misleading in predicting the stresses and deformations. The SSLD analysis also showed that the vertical and horizontal support lengths and the angled reinforcement length played an important role in reducing the peak adhesive and plate stresses.  相似文献   

8.
In this study, the geometrically non-linear analysis of an adhesively modified double containment corner joint was carried out using the incremental finite element method based on the small strain-large displacement (SSLD) theory. The plates, support, and adhesive layers were assumed to have linear elastic properties. The joint was analysed for two different loading conditions: one normal loading to the horizontal plate plane P y and one horizontal loading at the horizontal plate free edge P x . In addition, the small strain-small displacement (SSSD) analysis of this adhesive joint was also carried out in order to compare the capability of the two theories in predicting the effect of large displacements on the stress and deformation states of the joint members. Both analyses showed that stress and strain concentrations occurred around the adhesive free ends, corresponding to the vertical and horizontal slot free ends, and along the outer fibres of the horizontal and vertical plates. The peak stresses appeared at the slot corners inside the adhesive fillets and at the horizontal and vertical plate outer fibres corresponding to the two slot free ends. The variations of the Von Mises stresses at these critical adhesive and plate locations were evaluated versus increasing loads. The SSLD theory predicted an evident non-linear effect, as a result of the large displacements, on the stress variations for the loading P x , whereas this non-linear effect disappeared on the stresses for the loading P y ; thus, the stresses presented very close variations to those obtained by the SSSD theory. However, the SSSD theory predicted a lower stress variation proportional to the increasing load for both loading conditions. In the case of the loading P y , the right vertical adhesive fillet and both plates appeared as the most critical joint regions, whereas the lower horizontal fillet and both plates were determined as the most critical regions for the loading P x . The behaviour of all joint members towards the applied load is strictly dependent on the boundary and loading conditions. Finally, the SSSD theory may be misleading in the prediction of the stress and deformations, but the SSLD theory includes the non-linear effect of the large displacements and rotations and gives more realistic results, although it requires more computational effort. In addition, it was observed that the geometrical parameters, such as the support length, vertical support length, and vertical slot depth, had a considerable effect on the peak adhesive and plate stresses, depending on the loading condition.  相似文献   

9.
In cases where adhesively bonded joints may experience large displacements and rotations whilst the strains remain small, although all joint members behave elastically the small strain-small displacement (SSSD) theory cannot correctly predict the stresses and deformations in the adhesive joint members. Previous studies have shown that the small strain-large displacement theory considering the non-linear effects of the large displacements in the stresses and deformations has to be used in the analysis of adhesively bonded joints. In this study, the geometrical non-linear analysis of an adhesively bonded double containment corner joint was carried out using the incremental finite element method based on the small strain-large displacement (SSLD) theory. The objective of the study was to determine the effects of the large displacements on the adhesive and adherend stresses of the corner joint. Therefore, the corner joint was analysed for two different loading conditions; a compressive applied load, Px, at the free end of the horizontal plate and one normal to the plane of the horizontal plate, Py. The plates, support and adhesive layer were assumed to have elastic properties. In practice, the adhesive accumulations, called spew fillets, arising around the adhesive free ends were taken into account in the analysis since their presence results in a considerable decrease in the peak stresses around the free ends of the adhesive. The SSLD and SSSD analyses showed that the stress concentrations occurred around the free end of the adhesive, thus at the adherend (slot) corners inside the right vertical and the lower horizontal adhesive fillets, and inside the left vertical and the upper horizontal adhesive fillets for the loading conditions Px and Py, respectively. In addition, the plate regions around the adherend (slot) free ends along the outer fibres of the vertical and horizontal plates undergo very high stress concentrations. The SSLD analysis predicted a non-linear effect in the displacement and stress variations at the critical adhesive and plate locations, whereas the SSSD analysis showed their variations were lower and proportional to the applied incremental load. This non-linear effect became more evident for the loading condition Px, whereas both analyses predicted very close displacement and stress variations in the adhesive fillets and in the horizontal plate for the loading condition Py. As a result, the geometrical non-linear behaviour of the corner joint is strictly dependent on the loading condition and the large displacements affect the stress and deformation states in the joint members, and result in higher stresses than those predicted by the SSSD theory.  相似文献   

10.
In this study, stress and stiffness analyses of adhesively bonded tee joints with a single support plus angled reinforcement were carried out using the finite element method. It was assumed that the adhesive had linear elastic properties. In actual bonded joints, some amount of adhesive, called the spew fillet, accumulated at the free ends of the adhesive layer; therefore, the presence of the adhesive fillet at the adhesive free ends was taken into account. The tee joints were analysed for two boundary conditions: a rigid base and a flexible base. In addition, each boundary condition was analysed for four loading conditions: tensile, compressive, and two side loadings. The stress analysis showed that both side loading conditions resulted in higher stress levels in the joint region in which the vertical plate and supports are bonded to each other, as well as in the adhesive layer in this region for both rigid and flexible base boundary conditions. In adhesively bonded joints, the joint failure is expected to initiate in the adhesive regions subjected to high stress concentrations; therefore, the peak adhesive stresses were evaluated in these critical regions. In the case of the rigid base, the peak adhesive stresses occurred at the corner of the vertical plate, which was bent at right angles, for the tensile and compressive loading conditions, and in the adhesive fillet at the upper free end of the vertical adhesive layer-vertical support interface for both the left and the right side loading conditions. However, in case of the flexible base, the peak adhesive stresses occurred in the adhesive fillet at the right free end of the horizontal adhesive layer-horizontal support interface for the tensile, compressive, and the right side loading conditions, and in the vertical adhesive fillet at the upper free end of the vertical adhesive layer-vertical support interface for the left side loading condition. Furthermore, the adhesive stresses showed a nonlinear variation in the direction of the adhesive thickness for all boundary and loading conditions. The left side loading condition, among the present loading conditions, which results in the highest adhesive stresses is the most critical loading condition for both boundary conditions. The effects of horizontal and vertical support lengths on the peak adhesive stresses and on the joint stiffness were also investigated and the appropriate support dimensions relative to the plate thickness were determined based on the stress and stiffness analyses.  相似文献   

11.
In this study, the loss factors of an adhesively-bonded double containment cantilever joint were determined for different plate and support lengths. The response of the adhesive joint subjected to a transverse excitation force was measured with a contactless eddy-current sensor and the first bending natural frequency was determined using the Fast Fourier Transform method. The loss factor was calculated using the half-power bandwidth method based on the power spectrum of the joint vibration. After an excitation force was applied to the joint, the damped free vibration analysis was carried out using the finite element method and its measured loss factor. The transverse vibration attenuation was actively controlled with different numbers of actuators located on the top surface of the plate. The optimal control of the vibration attenuation was achieved based on a performance index by considering the strain energy, the kinetic energy, the work done on the adhesive joint by the actuators as well as the vibration attenuation time. Genetic Algorithm was implemented to this optimization problem in which the optimal control force histories, the optimal locations and the optimal numbers of the actuators were searched. Eight actuators exhibited the best control force history minimizing the performance index to 3.34 × 10–2. Thus, the attenuation time was reduced from 16 s to 0.15 s and the absolute displacement was decreased from 13.1 mm to 17.15 × 10–3 mm for 0.15 s. In addition, the modal strain energy and kinetic energy were found to be at lowest levels. As the actuator number was increased only a minor decrease in the performance index was observed after four actuators.  相似文献   

12.
In this study, the geometrical non-linear analysis of an adhesively bonded modified double containment comer joint, which is presented as an alternative to previous comer joints, was carried out using the incremental finite element method based on the small strain-large displacement (SSLD) theory. The analysis method assumes the joint members such as the support, plates, and adhesive layers to have linear elastic properties. Since the adhesive accumulations (spew fillets) around the adhesive free ends have an important effect on the peak adhesive stresses, their presence was taken into account by idealizing them as triangular in shape. The joint was analysed for two different loading conditions: one load normal to the horizontal plate plane, Py, and one load horizontal at the horizontal plate free edge, Px. Finally, small strain-small displacement (SSSD) analysis of the joint was carried out and the results of both analyses were compared in order to determine the capability of the two theories in predicting the effects of large displacements on the stress and deformation states in the joint members. Both analyses showed that the peak stress values appeared at the slot comers inside the adhesive fillets and at the upper and lower longitudinal fibres (top and bottom longitudinal surfaces) of the horizontal and vertical plates corresponding to the horizontal and vertical slot free ends. In the case of the load Py, the right vertical adhesive fillet and both plates were the most critical joint regions, whereas the lower horizontal fillet and both plates were determined to be the most critical regions for the load Px. The SSLD theory predicted a non-linear effect on the variations of the displacement and stress components at these critical adhesive and plate locations for the load Px, whereas the stress components at the critical adhesive locations presented variations very close to those determined by the SSSD theory for the load Py, but this non-linear effect appeared on the displacement and stress variations at the critical locations of both plates. In addition, the SSSD theory predicted that the displacement and stress components would have lower variations proportional to the increasing load for both loading conditions. The stress and deformation states of all joint members are strictly dependent on the boundary and loading conditions. In addition, whereas the SSSD theory may be misleading for some loading conditions, the SSLD theory gives more realistic results, since it takes into account the non-linear effect of large displacements and rotations.  相似文献   

13.
Under an increasing load, the adhesively bonded joints may undergo large rotations and displacements while strains are still small and even all joint members are elastic. In this case, the linear elasticity theory cannot predict correctly the nature of stress and deformation in the adhesive joints. In this study, an attempt was made to develop an analysis method considering the large displacements and rotations in the adhesive joints, assuming all joint members to be still elastic. An incremental finite element method was used in the application of the small strain-large displacement theory to the adhesively bonded joints. An adhesively bonded double containment cantilever (DCC) joint was analysed using this incremental finite element method under two different loadings: a tensile loading at the horizontal plate free end, Px. and one normal to the horizontal plate plane, Py. The adhesive and plates were assumed to have elastic properties, and some amount of adhesive, called spew fillet, that accumulated at the adhesive free ends was also taken into account. The analysis showed that the geometrical non-linear behaviour of adhesively bonded joints was strictly dependent on the loading and boundary conditions. Thus, a DCC joint exhibits a high non-linearity in the displacements, stresses, and strains in the critical sections of the adhesive and horizontal plate under a tensile loading at the free end of the horizontal plate, Px, while a similar behaviour in these regions was not observed for a loading normal to the horizontal plate plane, Py. However, an increasing non-linear variation in the stresses and deformations of the horizontal plate appeared from the free ends of the adhesive-horizontal plate interfaces to the free end of the horizontal plate for both loading conditions. Consequently, joint regions with a low stiffness always undergo high rotations and displacements, and if these regions include any adhesive layer, the non-linear effects will play an important role in predicting correctly the stresses and deformations in the joint members, especially at the adhesive free ends at which high stress concentrations occurred. In addition, the DCC joint exhibited a higher stiffness and lower stress and strain levels in the joint region in which the support and horizontal plate are bonded than those in the horizontal plate.  相似文献   

14.
Adhesive joints consist of adherends and an adhesive layer having different thermal and mechanical properties. When they are exposed to uniform thermal loads the mechanical-thermal mismatches of the adherends and adhesive layer result in uniform but different thermal strain distributions in the adhesive and adherends. The thermal stresses arise near and along the adherend-adhesive interfaces. The present thermal stress analyses of adhesively bonded joints assume a uniform temperature distribution or a constant temperature imposed along the outer boundaries of adhesive lap joints. This paper outlines the thermal analysis and geometrically non-linear stress analysis of adhesive joints subjected to different plate edge conditions and varying thermal boundary conditions causing large displacements and rotations. In addition, the geometrically non-linear thermal stress analysis of an adhesively bonded T-joint with single support plus angled reinforcement was carried out using the incremental finite element method, which was subjected to variable thermal boundary conditions, i.e. air streams with different temperatures and velocities parallel and perpendicular to its outer surfaces. The steady state heat transfer analysis showed that the temperature distribution through the joint members was non-uniform and high heat fluxes occurred inside the adhesive fillets at the adhesive free ends. Based on the geometrically non-linear stress analysis of the T-joint bonded to both rigid and flexible bases for different plate edge conditions, stress concentrations were observed at the free ends of adhesive-adherend interfaces and inside the adhesive fillets around the adhesive free ends, and the horizontal and vertical plates also experienced considerable stress distributions along outer surfaces. In addition, the effect of support length on the peak thermal adhesive stresses was found to be dependent on the plate edge conditions, when a support length allowing moderate adhesive stresses was present.  相似文献   

15.
This research work highlights the use of artificial neural networks (ANN) for modelling the rate-dependent response of adhesive materials with the purpose of expanding the established method for modelling the response of adhesively bonded structures, and in particular single lap joints. The motivation for this work comes after a viscoplastic model developed in a previous research work failed to predict the response of single lap joints bonded with a rate dependent adhesive material. The viscoplastic model, however, was successful in replicating both bulk and shear properties of the used adhesive system. Predictions made using the rate-dependent von Mises material model proved to be successful in predicting the behaviour of single lap joints, but it could not model the shear data using the tensile data due to hydrostatic stress sensitivity in the adhesive itself. Accurate predictions of the rate-dependent behaviour using artificial neural networks are possible with the availability of stress and strain data sets from experiments. This is where the neural network constitutive model directly acquires the information on the material behaviour from experimental data sets. Material data defining both the tensile and shear response of the adhesive system was extracted from previous research work. An artificial neural network constitutive model was developed and then used to replicate experimental data and also to generate further data at other strain rates. The available model could be slightly modified and then used to investigate various geometrical parameters, such as overlap length, plate thickness and adhesive thickness on joint strength.  相似文献   

16.
Structures consisting of single or more materials, such as adhesive joints, may undergo large displacements and rotations under reasonably high loads, although all materials are still elastic. The linear elasticity theory cannot predict correctly the deformation and stress states of these structures, since it ignores the squares and products of partial derivatives of the displacement components with respect to the material coordinates. When these derivatives are not small, these terms result in a non-linear effect called geometrical non-linearity. In this study, the geometrically non-linear stress analysis of an adhesively bonded T-joint with double support was carried out using the incremental finite element method. Different T-joint configurations bonded to a rigid base and to a flexible base were considered. For each configuration, linear and geometrically non-linear stress analyses of the T-joint were carried out and their results were compared for different horizontal and vertical plate end conditions. The geometrically non-linear analysis showed that the large displacements had a considerable effect on the deformation and stress states of both adherends and the adhesive layer. High stress concentrations were observed around the adhesive free ends and the peak adhesive stresses occurred inside the adhesive fillets. The adherend regions corresponding to the free ends of the adhesive–plate interfaces also experienced stress concentrations. In addition, the effects of the support length on the peak adhesive and adherend stresses were investigated; increasing the support length had a considerable effect in reducing the peak adhesive and adherend stresses.  相似文献   

17.
A theoretical model is developed to predict the strain of the pipe, coupling, and adhesive under tensile loading of an adhesive bonded joint. The model is found to be within 10 percent of the experimental pipe and coupling strain. Based on the model, several failure modes and their locations are defined and related to the measured data. In this investigation, delamination is the dominating mode of failure. The delamination stress for each test sample is within 7 percent of the average theoretical delamination stress. In addition, the effect of the coupling length, coupling Young's modulus, adhesive shear modulus, and adhesive thickness on the delamination failure are investigated. The model shows that decreasing the modulus of the coupling improves the delamination failure load; however, the coupling strain at the middle of the joint is increased by this variation. Increasing the shear modulus of the adhesive provides the most significant improvement of the joint delamination failure load. Two geometric factors, the joint length and the adhesive thickness also affect the joint failure load. The joint delamination failure load can only be significantly improved by increasing the bonding length up to a certain limit. Increasing the adhesive thickness increases the delamination failure load, however, a large gap between the pipe and coupling may contribute to misalignment during installation which may result in imposed moments under tensile loading. This study can supply the manufacturers with the appropriate design parameters to improve the joint performance significantly under tensile loading.  相似文献   

18.
This paper discusses the static and fatigue behavior of adhesively bonded single lap joints in SMC-SMC composites. Effects of lap length and adhesive thickness on the static and fatigue strength of SMC-SMC adhesive joints are studied. Effects of SMC surface preparation and test speed on the joint performance are evaluated. Finally, the effect of water exposure on the joint durability is also investigated. Results show that the static behavior of adhesive joints in SMC-SMC composites is significantly influenced by the lap length and adhesive thickness. With an increase in lap length from 12.7 mm to 38.1 mm, the joint failure load increases by 37%. The joint failure load also increases with the adhesive thickness, but it reaches a maximum at an adhesive thickness of 0.33 mm and then decreases. However, lap length and adhesive thickness have negligible effect on the ratio of fatigue strength to static strength. The fatigue strength at 106 cycles is approximately 50% to 54% of the static strength for various adhesive thicknesses and lap lengths investigated in this study. Adhesive failure, fiber tear or combination of these two failure modes are observed during both static and fatigue tests.  相似文献   

19.
李运军 《水泥工程》2024,37(3):90-92
熟料库顶钢结构不同于民用或其他钢结构,其顶部拉链机水平拉力较大,导致底圈支座附近杆件内力较大,支座节点成为熟料库网架设计的关键环节。本文将熟料库焊接球支座改良为十字形插板形式,并对截面高度、插板厚度、钢管伸入插板长度等参数制定了4组试件,并制定试验方案,对其承载力进行了试验研究,得出了以下结论:插板厚度、钢管伸入插板长度等参数对节点承载力的影响不大,十字形插板截面大小对承载力影响较大。试验破坏模式主要表现为十字形插板处焊缝破坏,在实际工程中应将十字形插板节点焊缝设计作为关键工作。  相似文献   

20.
A broad finite element study was carried out to understand the stress fields and stress intensity factors behavior of cracks in adhesively bonded double-lap joints, which are representative of loading in real aerospace structures. The interaction integral method and fundamental relationships in fracture mechanics were used to determine the mixed-mode stress intensity factors and associated strain energy release rates for various cases of interest. The numerical analyses of bonded joints were also studied for various kinds of adhesives and adherends materials, joint configurations, and thickness of adhesive and different crack lengths. The finite element results obtained show that the patch materials of low stiffness, low adhesive moduli and low tapering angles are desirable for a strong double-lap joint. In the double-lap joint, the shearing-mode stress intensity factor is always larger than that of the opening-mode and both shearing and opening mode stress intensity factors increase as the crack length increases, but their amplitudes are not sensitive to adhesive thickness. Results are discussed in terms of their relationship to adhesively bonded joints design and can be used in the development of approaches aimed at using adhesive bonding and extending the lives of adhesively bonded repairs for aerospace structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号