首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
A nitroalkane-oxidizing enzyme was purified to homogeneity from Neurospora crassa. The enzyme is composed of two subunits; the molecular weight of each subunit is approximately 40,000. The enzyme catalyzes the oxidation of nitroalkanes to produce the corresponding carbonyl compounds. It acts on 2-nitropropane better than on nitroethane and 1-nitropropane, and anionic forms of nitroalkanes are much better substrates than are neutral forms. The enzyme does not act on aromatic compounds. When the enzyme reaction was conducted in an 18O2 atmosphere with the anionic form of 2-nitropropane as the substrate, acetone (with a molecular mass of 60 Da) was produced. This indicates that the oxygen atom of acetone was derived from molecular oxygen, not from water; hence, the enzyme is an oxygenase. The reaction stoichiometry was 2CH3CH(NO2)CH3 + O2-->2CH3COCH3 + 2HNO2, which is identical to that of the reaction of 2-nitropropane dioxygenase from Hansenula mrakii. The reaction of the Neurospora enzyme was inhibited by superoxide anion scavengers in the same manner as that of the Hansenula enzyme. Both of these enzymes are flavoenzymes; however, the Neurospora enzyme contains flavin mononucleotide as a prosthetic group, whereas the Hansenula enzyme contains flavin adenine dinucleotide.  相似文献   

2.
2,4,5-Trihydroxytoluene (THT) oxygenase from Burkholderia sp. strain DNT catalyzes the conversion of THT to an unstable ring fission product. Biochemical and genetic studies of THT oxygenase were undertaken to elucidate the mechanism of the ring fission reaction. The THT oxygenase gene (dntD) was previously localized to the 1.2-kb DNA insert subcloned in the recombinant plasmid designated pJS76 (W. C. Suen and J. C. Spain, J. Bacteriol. 175:1831-1837, 1993). Analysis of the deduced amino acid sequence of DntD revealed the presence of the highly conserved residues characteristic of the catechol 2,3-dioxygenase gene family I. The deduced amino acid sequence of DntD corresponded to a molecular mass of 35 kDa. The native molecular masses for the THT oxygenase estimated by using gel filtration chromatography and nondenaturing gel electrophoresis were 67.4 and 77.8 kDa, respectively. The results suggested that the native protein consists of two identical subunits. The colorless protein contained 2 mol of iron per mol of protein. Stimulation of activity in the presence of ferrous iron and ascorbate suggested a requirement for ferrous iron in the active site. The properties of the enzyme are similar to those of the catechol 2,3-dioxygenases (meta-cleavage dioxygenases). In addition to THT, the enzyme exhibited activity towards 1,2,4-benzenetriol, catechol, 3- and 4-methylcatechol, and 3- and 4-chlorocatechol. The chemical analysis of the THT ring cleavage product showed that the product was 2, 4-dihydroxy-5-methyl-6-oxo-2,4-hexadienoic acid, consistent with extradiol ring fission of THT.  相似文献   

3.
L-2-Haloacid dehalogenase (EC 3.8.1.2) catalyzes the hydrolytic dehalogenation of L-2-haloacids to produce the corresponding D-2-hydroxy acids. We have analyzed the reaction mechanism of the enzyme from Pseudomonas sp. YL and found that Asp10 is the active site nucleophile. When the multiple turnover enzyme reaction was carried out in H2(18)O with L-2-chloropropionate as a substrate, lactate produced was labeled with 18O. However, when the single turnover enzyme reaction was carried out by use of a large excess of the enzyme, the product was not labeled. This suggests that an oxygen atom of the solvent water is first incorporated into the enzyme and then transferred to the product. After the multiple turnover reaction in H2(18)O, the enzyme was digested with lysyl endopeptidase, and the molecular masses of the peptide fragments formed were measured by an ionspray mass spectrometer. Two 18O atoms were shown to be incorporated into a hexapeptide, Gly6-Lys11. Tandem mass spectrometric analysis of this peptide revealed that Asp10 was labeled with two 18O atoms. Our previous site-directed mutagenesis experiment showed that the replacement of Asp10 led to a significant loss in the enzyme activity. These results indicate that Asp10 acts as a nucleophile on the alpha-carbon of the substrate leading to the formation of an ester intermediate, which is hydrolyzed by nucleophilic attack of a water molecule on the carbonyl carbon atom.  相似文献   

4.
Chlorophyll breakdown in green plants is a long-standing biological enigma. Recent work has shown that pheophorbide a (Pheide a) derived from chlorophyll (Chl) is converted oxygenolytically into a primary fluorescent catabolite (pFCC-1) via a red Chl catabolite (RCC) intermediate. RCC, the product of the ring cleavage reaction catalyzed by Pheide a oxygenase, which is suggested to be the key enzyme in Chl breakdown in green plants, is converted into pFCC-1 by a reductase. In the present study, an in vitro assay comprising 18O2 Pheide a oxygenase and RCC reductase yielded labeled pFCC-1. Fast atom bombardment-mass spectrometric analysis of the purified pFCC-1 product revealed that only one of the two oxygen atoms newly introduced into Pheide a in the course of the cleavage reaction is derived from molecular oxygen. Analysis of the fragment ions located the oxygen atom derived from molecular oxygen on the formyl group of pyrrole B. This finding demonstrates that the cleavage of Pheide a in vascular plants is catalyzed by a monooxygenase. Chlorophyll breakdown is therefore indicated to be mechanistically related in higher plants and in the green alga Chlorella protothecoides.  相似文献   

5.
GTP cyclohydrolase I catalyzes a ring expansion affording dihydroneopterin triphosphate from GTP. [1',2',3',4',5'-13C5, 2'-2H1]GTP was prepared enzymatically from [U-13C6]glucose for use as enzyme substrate. Multinuclear NMR experiments showed that the reaction catalyzed by GTP cyclohydrolase I involves the release of a proton from C-2' of GTP that is exchanged with the bulk solvent. Subsequently, a proton is reintroduced stereospecifically from the bulk solvent. This is in line with an Amadori rearrangement mechanism. The proton introduced from solvent occupies the pro-7R position in the enzyme product. The data also confirm that the reaction catalyzed by pyruvoyltetrahydropterin synthase results in the incorporation of solvent protons into positions C-6 and C-3' of the enzyme product. On the other hand, the reaction catalyzed by sepiapterin reductase does not involve any detectable incorporation of solvent protons into tetrahydrobiopterin.  相似文献   

6.
For oxygenation of polyenoic fatty acids by 12- and 15-lipoxygenases the methyl terminus of the substrate constitutes the signal for the initial hydrogen abstraction. In contrast, for 5-lipoxygenases an inverse head to tail substrate orientation has been proposed. However, recent structure-based sequence alignments suggested a conserved uniform substrate orientation for 5S- and 15S-lipoxygenation. Oxygenation of 15S-HETE derivatives by various wild-type and mutant lipoxygenases was investigated, and the evidence proved an inverse substrate orientation: (i) Substrate affinity and Vmax of 15S-HETE oxygenation by arachidonic acid 15-lipoxygenases are >1 order of magnitude lower than the corresponding data for polyenoic fatty acids. 5S,15S- and 14R, 15S-DiH(P)ETE were identified as major reaction products. (ii) Methylation of the carboxylate group of 15S-HETE augmented the reaction rate and shifted the reaction specificity strongly toward 5S-lipoxygenation. In contrast, methyl arachidonate was less effectively oxygenated than the free acid. Methylation of 15S-HETrE(8,11,14), which lacks the C5-C6 double bond, was without major impact on the oxygenation rate and on the product specificity. (iii) Introduction of a bulky glycerol moiety at the carboxylic group of 15S-HETE reversed the kinetic effects of methylation and led to a 14R-oxygenation of the substrate. (iv) When the product pattern of 15S-HETE oxygenation by the recombinant wild-type rabbit 15-lipoxygenase was compared with that formed by the Arg403Leu mutant, 5S- and 8S-lipoxygenations were augmented and 14R, 15S-DiH(P)ETE formation was impaired. (v) Phe353Leu or Ile418Ala mutation of the same enzyme, which favored 12S-HETE formation from arachidonic acid, strongly augmented 8S-lipoxygenation of 15S-HETE methyl ester. These kinetic data and the alterations in the product specificity are consistent with the concept of an inverse head to tail substrate orientation during the oxygenation of 15S-HETE methyl ester and/or of free 15S-HETE by 15-LOXs. For 5S- and 8S-lipoxygenation, 15-HETE may slide into the substrate binding pocket with its carboxy terminus approaching the doubly allylic methylenes C-7 or C-10 to the non-heme iron.  相似文献   

7.
The soluble flavoprotein alpha-glycerophosphate oxidase from Enterococcus casseliflavus catalyzes the oxidation of a "non-activated" secondary alcohol, in contrast to the flavin-dependent alpha-hydroxy- and alpha-amino acid oxidases. Surprisingly, the alpha-glycerophosphate oxidase sequence is 43% identical to that of the membrane-associated alpha-glycerophosphate dehydrogenase from Bacillus subtilis; only low levels of identity (17-22%) result from comparisons with other FAD-dependent oxidases. The recombinant alpha-glycerophosphate oxidase is fully active and stabilizes a flavin N(5)-sulfite adduct, but only small amounts of intermediate flavin semiquinone are observed during reductive titrations. Direct determination of the redox potential for the FAD/FADH2 couple yields a value of -118 mV; the protein environment raises the flavin potential by 100 mV in order to provide for a productive interaction with the reducing substrate. Steady-state kinetic analysis, using the enzyme-monitored turnover method, indicates that a ping-pong mechanism applies and also allows the determination of the corresponding kinetic constants. In addition, stopped-flow studies of the reductive half-reaction provide for the measurement of the dissociation constant for the enzyme. alpha-glycerophosphate complex and the rate constant for reduction of the enzyme flavin. These and other results demonstrate that this enzyme offers a very promising paradigm for examining the protein determinants for flavin reactivity and mechanism in the energy-yielding metabolism of alpha-glycerophosphate.  相似文献   

8.
Flavocytochrome b2 or L-lactate dehydrogenase from yeasts catalyzes the oxidation of L-lactate at the expense of monoelectronic acceptors such as cytochrome c, its physiological partner. When incubated in the presence of both L-lactate and a keto acid, the enzyme catalyzes a transhydrogenation reaction wherein only the flavin is involved. During this reaction, the substrate alpha-hydrogen is transferred not only to the solvent but also in part to the keto acid, which acts as reverse substrate. Thus, when bound to the reduced enzyme, this hydrogen is sticky. In the context of a carbanion mechanism, it resides on Nepsilon of His373, the active site base. We have shown before that a correlation between the amount of intermolecular hydrogen transfer from [2-3H] lactate and the keto acid reverse substrate concentration enables the determination of the first-order rate constant, kHe, for exchange of the substrate-derived protein-bound hydrogen with bulk solvent (Urban P, Lederer F, 1985, J Biol Chem 260:11115-11122). In this work, we show that the exchange with the solvent appears to be independent of the phosphate buffer concentration in the range from 40 to 500 mM. It is thus probable that exchange occurs directly with water molecules. The second-order rate constant for exchange is then 0.16 (+/-0.03) M(-1) s(-1). Using the Eigen equation, this figure yields a pKa of 9.1+/-0.1 for His373 in the reduced enzyme, compared to a probable value of 6.0 or less in the oxidized enzyme (Suzuki H, Ogura YC, 1970, J Biochem 67:291-295). The mechanistic significance of these results is discussed.  相似文献   

9.
In a gram-negative isolate (DSM 9103) able to grow with EDTA as the sole source of carbon, nitrogen, and energy, the first two steps of the catabolic pathway for EDTA were elucidated. They consisted of the sequential oxidative removal of two acetyl groups, resulting in the formation of glyoxylate. An enzyme complex that catalyzes the removal of two acetyl groups was purified and characterized. In the reaction, ethylenediaminetriacetate (ED3A) was formed as an intermediate and N,N'-ethylenediaminediacetate was the end product. The enzyme complex consisted of two components: component A' (cA'), most likely a monooxygenase, which catalyzes the cleavage of EDTA and ED3A while consuming oxygen and reduced flavin mononucleotide (FMN)-H2, and component B' (cB'), an NADH2:FMN oxidoreductase that provides FMNH2 for cA'. cB' could be replaced by other NADH2:FMN oxidoreductases such as component B of the nitrilotriacetate monooxygenase or the NADH2:FMN oxidoreductase from Photobacterium fischeri. The EDTA-oxidizing enzyme complex accepted EDTA as a substrate only when it was complexed with Mg2+, Zn2+, Mn2+, Co2+, or Cu2+. Moreover, the enzyme complex catalyzed the removal of acetyl groups from several other aminopolycarboxylic acids that possess three or more acetyl groups.  相似文献   

10.
Adenylylsulfate reductase (EC 1.8.99.2) isolated from Desulfovibrio vulgaris Miyazaki catalyzes electron transfer from dihydroflavin coenzyme (FADH2, FMNH2, or dihydroriboflavin) to adenylyl sulfate (APS), and catalyzes flavin-mediated oxidation of ferrocytochrome c3 with APS. The reaction with FAD as an electron mediator was markedly stimulated in the presence of menadione. Km of the enzyme was about 0.015 mM for riboflavin and FAD in the presence of menadione. Free flavin coenzyme was found to be the normal cellular constituent. These observations suggested that free flavin coenzyme may be a physiological electron carrier for APS reductase, and the enzyme may be called AMP, sulfite:flavin oxidoreductase. Km (APS) of this enzyme is lower than 1 microM. The enzyme is not inhibited by ATP and GTP, but was inhibited by AMP and sulfite. Its extremely low Km (APS) enables this enzyme to reduce any traces of cytosolic APS which is present only at micromolar concentration, and inhibition by sulfite makes this organism utilize an energetically favorable electron acceptor, sulfite, preferentially over APS which is produced from sulfate at the cost of ATP.  相似文献   

11.
The oxidation of low density lipoprotein (LDL) by mammalian 15-lipoxygenases (15-LOX) was implicated in early atherogenesis. We investigated the molecular mechanism of 15-LOX/LDL interaction and found that during short term incubations, LDL cholesterol esters are oxygenated preferentially by the enzyme. Even when the LDL particle was loaded with free linoleic acid, cholesteryl linoleate constituted the major LOX substrate. In contrast, only small amounts of free oxygenated fatty acid isomers were detected, and re-esterification of oxidized fatty acids into the LDL ester lipid fraction was ruled out. When LDL was depleted from alpha-tocopherol, specific oxygenation of the cholesterol esters was not prevented, and the product pattern was not altered. Similar results were obtained at low (LDL/LOX ratio of 1:1) and high LOX loading (LDL/LOX ratio of 1:10) of the LDL particle. During long term incubations (up to 24 h), a less specific product pattern was observed. However, when the hydroperoxy lipids formed by the 15-LOX were immediately reduced by the phospholipid hydroperoxide glutathione peroxidase, when the reaction was carried out with vitamin E-depleted LDL, or when the assay sample was diluted, the specific pattern of oxygenation products was retained over a long period of time. These data suggest that mammalian 15-LOX preferentially oxidize LDL cholesterol esters, forming a specific pattern of oxygenation products. During long term incubations, free radical-mediated secondary reactions, which lead to a more unspecific product pattern, may become increasingly important. These secondary reactions appear to be suppressed when the hydroperoxy lipids formed are immediately reduced, when alpha-tocopherol-depleted LDL was used, or when the incubation sample was diluted. It may be concluded that 15-LOX-initiated LDL oxidation constitutes a dual-type oxygenase reaction with an initial enzymatic and a subsequent nonenzymatic phase. The biological relevance of this dual-type reaction for atherogenesis will be discussed.  相似文献   

12.
Photolyase repairs UV-induced cyclobutane-pyrimidine dimers in DNA by photoinduced electron transfer. The enzyme isolated from Escherichia coli contains 5,10-methenyltetrahydrofolate, which functions as the light-harvesting chromophore, and fully reduced flavin adenine dinucleotide (FAD), which functions as the redox catalyst. During enzyme preparation, the flavin is oxidized to FADH0, which is catalytically inert. Illumination of the enzyme with 300- to 600-nm light converts the flavin to the fully reduced form in a reaction that involves photooxidation of an amino acid in the apoenzyme. The results of earlier optical studies had indicated that the redox-active amino acid in this photoactivation process was tryptophan. We have now used time-resolved electron paramagnetic resonance (EPR) spectroscopy to investigate the photoactivation reaction. Excitation of the flavin-radical-containing inactive enzyme produces a spin-polarized radical that we identify by 2H and 15N labeling as originating from a tryptophan residue, confirming the inferences from the optical work. These results and Trp-->Phe replacement by site-directed mutagenesis reveal that flavin radical photoreduction is achieved by electron abstraction from Trp-306 by the excited-state FADH0. Analysis of the hyperfine couplings and spin density distribution deduced from the isotopic-labeling results shows that the product of the light-driven redox chemistry is the Trp-306 cation radical. The results strongly suggest that the active form of photolyase contains FADH- and not FADH2.  相似文献   

13.
Aromatase is a cytochrome P450 enzyme complex that catalyzes the conversion of androst-4-ene-3,17-dione to estrone through three sequential oxygenations of the 19-methyl group. Androst-4-ene-3,6,17-trione (1) is a suicide substrate of aromatase. The inactivation mechanism for steroid 1 has been studied to show that the inactivation reaction proceeds through the 19-oxo intermediate 3. To further clarify the mechanism, 4 beta, 5 beta-epoxyandrosta-3,6,17,19-tetraone (6) was synthesized as a candidate for a reactive electrophile involved in irreversible binding to the active site of aromatase, upon treatment of compound 3 with hydrogen peroxide in the presence of NaHCO3. The epoxide 6 inhibited human placental aromatase in a competitive manner (Ki = 30 microM); moreover, it inactivated the enzyme in an active-site-directed manner in the absence of NADPH (K1 = 88 microM, kinact = 0.071 min-1). NADPH and BSA both stimulated the inactivation rate without a significant change of the K1 in either case (kinact: 0.133 or 0.091 min-1, in the presence of NADPH or BSA, respectively). The substrate androst-4-ene-3,17-dione protected the inactivation, but a nucleophile, L-cysteine, did not. When both the epoxide 6 and its 19-methyl analog 4 were subjected separately to reaction with N-acetyl-L-cysteine in the presence of NaHCO3, the 19-oxo steroid 6 disappeared from the reaction mixture more rapidly (T1/2 = 40 sec) than the 19-methyl analog 4 (T1/2 = 3.0 min). The results clearly indicate that the 4 beta, 5 beta-epoxy-19-oxo compound 6, which is possibly produced from 19-oxo-4-ene steroid 3 through the 19-hydroxy-19-hydroperoxide intermediate, is a reactive electrophile that irreversibly binds to the active site of aromatase.  相似文献   

14.
Pseudomonas pseudoalcaligenes JS45 grows on nitrobenzene as a sole source of carbon, nitrogen, and energy. The catabolic pathway involves reduction to hydroxylaminobenzene followed by rearrangement to o-amino-phenol and ring fission (S. F. Nishino and J. C. Spain, Appl. Environ. Microbiol. 59:2520, 1993). A nitrobenzene-inducible, oxygen-insensitive nitroreductase was purified from extracts of JS45 by ammonium sulfate precipitation followed by anion-exchange and gel filtration chromatography. A single 33-kDa polypeptide was detected by denaturing gel electrophoresis. The size of the native protein was estimated to be 30 kDa by gel filtration. The enzyme is a flavoprotein with a tightly bound flavin mononucleotide cofactor in a ratio of 2 mol of flavin per mol of protein. The Km for nitrobenzene is 5 microM at an initial NADPH concentration of 0.5 mM. The Km for NADPH at an initial nitrobenzene concentration of 0.1 mM is 183 microM. Nitrosobenzene was not detected as an intermediate of nitrobenzene reduction, but nitrosobenzene is a substrate for the enzyme, and the specific activity for nitrosobenzene is higher than that for nitrobenzene. These results suggest that nitrosobenzene is formed but is immediately reduced to hydroxylaminobenzene. Hydroxylaminobenzene was the only product detected after incubation of the purified enzyme with nitrobenzene and NADPH. Hydroxylaminobenzene does not serve as a substrate for further reduction by this enzyme. The products and intermediates are consistent with two two-electron reductions of the parent compound. Furthermore, the low Km and the inducible control of enzyme synthesis suggest that nitrobenzene is the physiological substrate for this enzyme.  相似文献   

15.
The isoalloxazine ring system of the FAD cofactor of p-hydroxybenzoate hydroxylase must be secluded from solvent at specific stages of catalysis in order to form and stabilize a flavin C4a-hydroperoxide. This species may then react with the activated phenolate of p-hydroxybenzoate. A number of crystal structures of the enzyme with alterations to active site substituents or complexes with analogue benzoates have revealed an alternate position for the isoalloxazine (Gatti et al. (1994) Science 266, 110-114; Schreuder et al. (1994) Biochemistry 33, 10161-10170). This new flavin conformation is 7 A "out" toward solvent and may open a passage for substrate entry to the active site. Arginine 220 is one of the few residues in the structure to demonstrate conformational changes when the flavin is "out". In this study we have made the Arg220Lys mutant to test the significance of this residue in flavin movement. The R220K mutation has brought about dramatic alterations to all aspects of catalysis. Stopped flow kinetic characterization of the mutant has revealed that, while the effector role for the substrate is maintained, there exists an order of magnitude decrease in the limiting rate of reduction, even though there is 40-fold increase in association with NADPH. The mutant enzyme has only a fraction of its reductive half-reaction coupled to product formation, and the hydroxylation process is slow. This occurs despite a higher proportion of the more activated substrate phenolate in the active site. Many of the observed changes can be attributed to a decrease in the stability of the "in" conformation of the flavin during the catalysis and indicate a role for flavin conformational states in many of the catalytic processes of the enzyme.  相似文献   

16.
Biotransformations with recombinant Escherichia coli expressing the genes encoding 2-nitrotoluene 2,3-dioxygenase (2NTDO) from Pseudomonas sp. strain JS42 demonstrated that 2NTDO catalyzes the dihydroxylation and/or monohydroxylation of a wide range of aromatic compounds. Extremely high nucleotide and deduced amino acid sequence identity exists between the components from 2NTDO and the corresponding components from 2,4-dinitrotoluene dioxygenase (2,4-DNTDO) from Burkholderia sp. strain DNT (formerly Pseudomonas sp. strain DNT). However, comparisons of the substrates oxidized by these dioxygenases show that they differ in substrate specificity, regiospecificity, and the enantiomeric composition of their oxidation products. Hybrid dioxygenases were constructed with the genes encoding 2NTDO and 2,4-DNTDO. Biotransformation experiments with these hybrid dioxygenases showed that the C-terminal region of the large subunit of the oxygenase component (ISP alpha) was responsible for the enzyme specificity differences observed between 2NTDO and 2,4-DNTDO. The small subunit of the terminal oxygenase component (ISP beta) was shown to play no role in determining the specificities of these dioxygenases.  相似文献   

17.
The flavin-containing enzyme dihydroorotate dehydrogenase (DHOD) catalyzes the oxidation of dihydroorotate (DHO) to orotate, the first aromatic intermediate in pyrimidine biosynthesis. The first structure of a DHOD, the A form of the enzyme from Lactococcus lactis, has recently become known, and some conserved residues were suggested to have a role in the active site [Rowland et al. (1997) Structure 2, 239-252]. In particular, Cys 130 was hypothesized to work as a base, which activates dihydroorotate (DHO) for hydride transfer. By chemical modification and site-directed mutagenesis we have obtained results consistent with this proposal. Cys 130 was susceptible to alkylating reagents, and mutants of Cys 130 (C130A and C130S) showed hardly detectable enzyme activity at pH 8.0, while at pH 10 the C130S mutant enzyme had approximately 1% of wild-type activity. Mutants of Lys 43, Asn 132, and Lys 164 were also constructed. Exchange of Lys 43 to Ala or Glu (K43A and K43E) and of Asn 132 to Ala (N132A) affected both catalysis and substrate binding. Expressed as kcat/KM for DHO, the deterioration of these three mutant enzymes was 10(3)-10(4)-fold. Flavin spectra of the mutant enzymes were not, like the wild-type enzyme, bleached by DHO in stopped-flow experiments, showing that they were deficient with respect to the first half-reaction, namely reduction of FMN by DHO, which was not rate limiting for the wild-type enzyme. The binding interaction between flavin and the reaction product, orotate, could be monitored by a red shift of the flavin absorbance in the wild-type enzyme. The C130A, C130S, and N132A mutant enzymes displayed similar capacity to bind orotate. In contrast, orotate did not change the absorption spectra of the K43 mutant enzymes, although it did inhibit their activity. All of the mutant enzymes, except K164A, contained normal levels of flavin. The results are discussed in relation to the structures of DHODA and other flavoenzymes. The possible acid-base chemistry of Cys 130 is compared to previous work on mammalian dihydropyrimidine dehydrogenases, flavoenzymes, which catalyze the reversed reaction, namely the reduction of pyrimidine bases.  相似文献   

18.
A FAD and [4Fe-4S]cluster-containing enzyme from Clostridium aminobutyricum catalyses the reversible dehydration of 4-hydroxybutyryl-CoA to crotonyl-CoA which involves the cleavage of an unactivated C-H bond at the beta-carbon. Transient oxidation of the substrate to an enoxy radical by FAD might facilitate the removal of this beta-proton, whereas no function could be attributed to the [4Fe-4S]cluster. In this paper the organic radical, which is formed by partial reduction of the enzyme with dithionite, was characterised as the neutral flavin semiquinone by EPR spectroscopy in H2O and D2O. The rapid electron-spin relaxation of the flavin semiquinone suggested a magnetic interaction with the [4Fe-4S]cluster. In order to obtain highly resolved information about nuclear spins in the vicinity of this paramagnetic centre, ENDOR spectroscopy was applied. The spectra were compared with those of the neutral semiquinone radicals of ferredoxin-NADP reductase and flavodoxin as well as with that of the anionic semiquinone radical of cholesterol oxidase. All ENDOR spectra showed strong couplings to the 8-methyl protons and to H-6 of the flavin. On addition of the substrates to the corresponding enzymes, the electron density changed significantly only at the 8-position. It decreased in the case of cholesterol oxidase and ferredoxin-NADP reductase, whereas an increase was observed with 4-hydroxybutyryl-CoA dehydratase. The results indicate an interaction of 4-hydroxybutyryl-CoA with the flavin as required by the proposed mechanism. Furthermore, the shift of electron density towards the benzoid ring of FAD in the dehydratase might be due to the location of the [4Fe-4S]cluster next to the 8-position as known from structurally characterised iron-sulfur flavoproteins.  相似文献   

19.
BACKGROUND: The homodimeric nitric oxide synthase (NOS) catalyzes conversion of L-arginine to L-citrulline and nitric oxide. Each subunit contains two flavins and one protoporphyrin IX heme. A key component of the reaction is the transfer of electrons from the flavins to the heme. The NOS gene encodes two domains linked by a short helix containing a calmodulin-recognition sequence. The reductase domain binds the flavin cofactors, while the oxygenase domain binds heme and L-arginine and additionally mediates the dimerization of the NOS subunits. We investigated the origin of the unusual magnetic properties (rapid-spin relaxation) of an air-stable free radical localized to a reductase domain flavin cofactor. RESULTS: We characterized the air-stable flavin in wild-type NOS, both in the presence and absence of calcium and calmodulin, the imidazole-bound heme complex of wild-type NOS, the NOS Cys415-->Ala mutant, and the isolated reductase domain. All preparations of NOS had the same flavin electron-spin relaxation behavior. No half-field transitions or temperature-dependent changes in the linewidth of the radical spin signal were detected. CONCLUSIONS: These data suggest that the observed relaxation enhancement of the NOS flavin radical is caused by the environment provided by the reductase domain. No magnetic interaction between the heme and flavin cofactors was detected, suggesting that the flavin and heme centers are probably separated by more than 15 A.  相似文献   

20.
A highly specific Diels-Alder protein catalyst was made by manipulating the antibody repertoire of the immune system. The catalytic antibody 13G5 catalyzes a disfavored exo Diels-Alder transformation in a reaction for which there is no natural enzyme counterpart and that yields a single regioisomer in high enantiomeric excess. The crystal structure of the antibody Fab in complex with a ferrocenyl inhibitor containing the essential haptenic core that elicited 13G5 was determined at 1.95 angstrom resolution. Three key antibody residues appear to be responsible for the observed catalysis and product control. Tyrosine-L36 acts as a Lewis acid activating the dienophile for nucleophilic attack, and asparagine-L91 and aspartic acid-H50 form hydrogen bonds to the carboxylate side chain that substitutes for the carbamate diene substrate. This hydrogen-bonding scheme leads to rate acceleration and also pronounced stereoselectivity. Docking experiments with the four possible ortho transition states of the reaction explain the specific exo effect and suggest that the (3R,4R)-exo stereoisomer is the preferred product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号