首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 755 毫秒
1.
This study presents an asymmetric broadside coupled balun with low-loss broadband characteristics for mixer designs. The correlation between balun impedance and a 3D multilayer CMOS structure are discussed and analyzed. Two asymmetric multilayer meander coupled lines are adopted to implement the baluns. Three balanced mixers that comprise three miniature asymmetric broadside coupled Marchand baluns are implemented to demonstrate the applicability to MOS technology. Both a single and dual balun occupy an area of only 0.06 mm2. The balun achieves a measured bandwidth of over 120%, an insertion loss of better than 4.1 dB (3 dB for an ideal balun) at the center frequency, an amplitude imbalance of less than 1 dB, and a phase imbalance of less than 5deg from 10 to 60 GHz. The first demonstrated circuit is a Ku-band mixer, which is implemented with a miniaturized balun to reduce the chip area by 80%. This 17-GHz mixer yields a conversion loss of better than 6.8 dB with a chip size of 0.24 mm2. The second circuit is a 15-60-GHz broadband single-balanced mixer, which achieves a conversion loss of better than 15 dB and occupies a chip area of 0.24 mm2. A three-conductor miniaturized dual balun is then developed for use in the third mixer. This star mixer incorporates two miniature dual baluns to achieve a conversion loss of better than 15 dB from 27 to 54 GHz, and occupies a chip area of 0.34 mm2.  相似文献   

2.
A compact ultra-broadband MMIC-compatible uniplanar balun has been developed using offset air-gap coupler. The offset air-gap coupler presents tight coupling and low conductor loss, and thus allows the balun to show low loss at mm-wave frequencies. The measured insertion loss was less than 2 dB from 26 to 55 GHz, and amplitude and phase imbalance was less than /spl plusmn/1dB and 5/spl deg/, respectively over a wide frequency range from 27 to 69 GHz.  相似文献   

3.
This work reports a novel lump-element balun for use in a miniature monolithic subharmonically pumped resistive mixer (SPRM) microwave monolithic integrated circuit. The proposed balun is simply analogous to the traditional Marchand balun. The coupled transmission lines are replaced by lump elements, significantly reducing the size of the balun. This balun requires no complicated three-dimensional electromagnetic simulations, multilayers or suspended substrate techniques; therefore, the design parameters are easily calculated. A 2.4-GHz balun is demonstrated using printed circuit board technology. The measurements show that the outputs of balun with high-pass and band-pass responses, a 1-dB gain balance, and a 5/spl deg/ phase balance from 1.7 to 2.45 GHz. The balun was then applied in the design of a 28-GHz monolithic SPRM. The measured conversion loss of the mixer was less than 11dB at a radio frequency (RF) bandwidth of 27.5-28.5 GHz at a fixed 1 GHz IF, a local oscillator (LO)-RF isolation of over 35 dB, and a 1-dB compression point higher than 9 dBm. The chip area of the mixer is less than 2.0 mm/sup 2/.  相似文献   

4.
A new wide-band microstrip balun implemented on a single-layer printed circuit board (PCB) is presented in this letter. The proposed planar balun consists of a wide-band Wilkinson power divider and a noncoupled-line broad-band 180/spl deg/ phase shifter. To demonstrate the design methodology, one prototype is realized. The new design was simulated and validated by the measurement. Measured results show that 10-dB return loss of the unbalanced port has been achieved across the bandwidth from 1.7 GHz to 3.3 GHz, or 64%. Within the operation band, the measured return losses for both the two balanced ports are better than -10 dB, and the balanced ports isolation is below -1.5 dB. The measured amplitude and phase imbalance between the two balanced ports are within 0.3 dB and /spl plusmn/5/spl deg/, respectively, over the operating frequency band.  相似文献   

5.
In this paper, three monolithic star mixers using a new miniature dual balun are proposed. The first one is a double spiral transformer mixer, and the second one is a trifilar transformer mixer. Both of these are fabricated using a commercial GaAs pseudomorphic HEMT process. The third is a 3-D transformer mixer, which is fabricated using a commercial CMOS process. These mixers exhibit bandwidths over 25-45 GHz (57%) with local oscillator isolations better than 20 dB. These star mixers are smaller than (lambda/6timeslambda/6) for the mixer core area. Compared with traditional star mixers, these mixers demonstrate 80% size reduction, and achieve good performance with the smallest chip size among all star mixers using monolithic microwave integrated circuit processes.  相似文献   

6.
This paper describes the realization of a hybrid star mixer as a planar circuit. The mixer has a minimum conversion loss of 5 dB and, for a conversion loss of less than 9 dB, spans over 2.2 GHz in IF bandwidth and 8 GHz in RF/LO bandwidth. The mixer employs a novel, planar balun structure, similar to conductor-backed CPW, that is suitable for realization as a monolithic circuit  相似文献   

7.
A technique for converting baluns into 180/spl deg/ hybrids by adding an in-phase power splitter is presented in this paper. Incorporating the broad-band antiphase and in-phase power splitting characteristics of the balun and power splitter results in a 180/spl deg/ hybrid with broad-band characteristics. This technique also provides a means of achieving perfect matching and output isolation for three-port lossless baluns. Applying this technique to a Marchand balun will result in a broad-band impedance-transforming 180/spl deg/ hybrid. Simple design equations based on the scattering matrix are presented. These theoretical results are validated by an experimental 180/spl deg/ hybrid using a coupled line Marchand balun. It achieves amplitude balance of 0.5 dB and phase balance of less than 5/spl deg/ from 1.2 to 3.2 GHz.  相似文献   

8.
A dc-21 GHz low imbalance active balun using a 2 $mu{rm m}$ InGaP/GaAs HBT process is presented in this letter for high speed data communications. A Darlington cell is adopted to enhance 3 dB bandwidth of the proposed active balun. A feedback capacitor is designed to compensate the phase error between differential output ports caused by the different number of stages. The proposed active balun achieves a broad bandwidth of 21 GHz, an average small signal gain of 2.5 dB, a maximum amplitude imbalance of 1.2 dB, and a phase error of less than 5$^{circ}$. The measured group delays of the balun are lower than 30 ps with low variation. Moreover, an eye diagram with a pseudorandom bit stream of up to 12.5 Gbps is presented. The active balun is appropriate for high speed data communications due to its low imbalance and group delay.   相似文献   

9.
李志强  张健  张海英 《电子学报》2008,36(12):2454-2457
 本文介绍了一种带有小型化无源Balun的C波段单片GaAs pHEMT单平衡电阻性混频器.Balun 采用集总—分布式结构,使其长度与常用λ/4耦合线Balun相比缩小了11倍,大大降低了将无源Balun应用于C波段单片集成电路中所需的芯片尺寸.混频器采用单平衡电阻性结构,在零功耗的情况下实现了良好的线性和口间隔离性能.测试结果显示,在固定中频160MHz,本振输入功率0dBm条件下,在3.5~5GHz RF频带内,最小变频损耗为8.3dB,1dB压缩点功率为8.0dBm,LO至IF之间的隔离度为38dB.  相似文献   

10.
In this letter, we present a wideband active intermediate frequency (IF) balun for a doubly balanced resistive mixer implemented using a 0.5 mum GaAs pHEMT process. The 0.3 times 0.5 mm2 IF balun was realized through a DC-coupled differential amplifier in order to extend IF frequency of the mixer to DC. The measured amplitude and phase imbalances were less than 1 dB and 5deg, respectively, from DC to 7 GHz. The output third order intercept (OIP3) and P1 dB of the IF balun were 18 dBm and 6 dBm, respectively at 1 GHz. The mixer with the IF balun is 1.7 times 1.8 mm2 in size, has a conversion loss of 2 to 8 dB from 8 to 20 GHz RF frequency at a fixed IF of 1 kHz, which proves the mixer operates successfully at an IF frequency close to DC. The measured OIP3 were +10 to +15 dBm over the operating frequency with a DC power consumption of 370 mW.  相似文献   

11.
ABSTRACT

We demonstrate an elliptical dual balun structure for 94 GHz image radar transceiver. The results of two prototypes with small chip size of 0.0256 mm2 are reported. For the first one (i.e. dual balun 1), the input couple-line width is 4 mm and coupled-line space is 2 µm. That is, the distance between the output couple-lines is 8 mm. For the second one (i.e. dual balun 2), the input couple-line width is 2 mm and coupled-line space is 3 mm. The distance between output couple-lines is also 8 mm. The other geometric parameters of the two dual baluns are the same. In a star double-balanced mixer or a four-way power amplifier, the dual balun is applicable for four-way power splitting. Over the 92 ~ 96 GHz, dual balun 1 attains prominent S11 of ?14.4~ ?16.4 dB, S21 of ?7.61~ ?7.67 dB, S31 of ?8.78~ ?8.93 dB, S41 of ?7.43~ ?7.6 dB, S51 of ?9.68~ ?9.89 dB, amplitude imbalance magnitude (AIM) smaller than 2.39 dB, and phase difference deviation (PDD) smaller than 3.6°. Furthermore, dual balun 2 attains remarkable S11 of ?13.8~ ?14.8 dB, S21 of ?7.8~ ?7.95 dB, S31 of ?8~ ?8.39 dB, S41 of ?7.46~ ?7.72 dB, S51 of ?8.18~ ?8.54 dB, AIM smaller than 0.95 dB, and PDD smaller than 3.8°, close to those of dual balun 1.  相似文献   

12.
本文介绍了四次谐波镜像抑制混频器中无源部分的设计,无源部分包括了双巴伦和兰格电桥。通过ADS 软件进行相关的仿真,最终实现了巴伦在频段7.9~9.5GHz 的幅度不平衡度小于0.2dB,相位不平衡度小于1°,在中心频率8.7GHz 的插损约为7.3 dB;兰格电桥在频段30~40GHz 的幅度不平衡度小于0.3 dB,相位不平衡度小于1°在中心频率35GHz 的插损约为3.25 dB。双巴伦和兰格电桥仿真得到的结果良好,为最终四次谐波镜像抑制混频器的单片实现奠定了基础。  相似文献   

13.
采用0.5μm GaAs工艺设计并制造了一款单片集成驱动放大器的低变频损耗混频器.电路主要包括混频部分、巴伦和驱动放大器3个模块.混频器的射频(RF)、本振(LO)频率为4~7 GHz,中频(IF)带宽为DC~2.5 GHz,芯片变频损耗小于7 dB,本振到射频隔离度大于35 dB,本振到中频隔离度大于27 dB.1 dB压缩点输入功率大于11 dBm,输入三阶交调点大于20 dBm.该混频器单片集成一款驱动放大器,解决了无源混频器要求大本振功率的问题,变频功能由串联二极管环实现,巴伦采用螺旋式结构,在实现超低变频损耗和良好隔离度的同时,保持了较小的芯片面积.整体芯片面积为1.1 mm×1.2 mm.  相似文献   

14.
In this paper, a 94 GHz microwave monolithic integrated circuit (MMIC) single balanced resistive mixer affording high LO-to-RF isolation was designed without an IF balun. The single balanced resistive mixer, which does not require an external IF balun, was designed using a 0.1 μm InGaAs/InAlAs/GaAs metamorphic high electron mobility transistor (HEMT). The designed MMIC single balanced resistive mixer was fabricated using the 0.1 μm MHEMT MMIC process. From the measurement, conversion loss of the single balanced resistive mixer was 14.7 dB at an LO power of 10 dBm. The P1 dB (1 dB compression point) values of the input and output were 10 dBm and −5.3 dBm, respectively. The LO-to-RF isolation of the single balanced resistive mixer was −35.2 dB at 94.03 GHz. The single balanced resistive mixer in this work provided high LO-to-RF isolation without an IF balun.  相似文献   

15.
In this paper, we proposed two baluns, a compact balun and a compact balun with imbalance compensation; both are implemented using the one-poly six-metal (1P6M) 0.18 μ m CMOS process. Both baluns have good performance from 4 to 10 GHz, and consume less silicon area due to their compact structure. The self-resonant frequency is increased by properly selecting metal layer for each spiral winding. The compact balun has a magnitude imbalance of 1 dB and a phase imbalance of 4.6 degree from 4 to 10 GHz. With the imbalance compensation, the balun has a magnitude imbalance of 0.6 dB and a phase imbalance of 1.1 degree from 4–10 GHz. Much better results have been achieved for the compact balun with our proposed imbalance compensation method. Both baluns can be used to perform both single-ended/differential and differential/single-ended conversions in different configurations.  相似文献   

16.
We present the design and measurement results of millimeter-wave integrated circuits implemented in 65-nm baseline CMOS. Both active and passive test structures were measured. In addition, we present the design of an on-chip spiral balun and the transition from CPW to the balun and report transistor noise parameter measurement results at V-band. Finally, the design and measurement results of two amplifiers and a balanced resistive mixer are presented. The 40-GHz amplifier exhibits 14.3 dB of gain and the 1-dB output compression point is at $+$6-dBm power level using a 1.2 V supply with a compact chip area of 0.286 ${hbox{mm}}^{2}$. The 60-GHz amplifier achieves a measured noise figure of 5.6 dB at 60 GHz. The AM/AM and AM/PM results show a saturated output power of $+$7 dBm using a 1.2 V supply. In downconversion, the balanced resistive mixer achieves 12.5 dB of conversion loss and $+$5 dBm of 1-dB input compression point. In upconversion, the measured conversion loss was 13.5 dB with $-$19 dBm of 1-dB output compression point.   相似文献   

17.
A CMOS dual-band multi-mode RF front-end for the global navigation satellite system receivers of all GPS,Bei-Dou,Galileo and Glonass systems is presented.It consists of a reconfigurable low noise amplifier(LNA),a broadband active balun,a high linearity mixer and a bandgap reference(BGR) circuit.The effect of the input parasitic capacitance on the input impedance of the inductively degenerated common source LNA is analyzed in detail.By using two different LC networks at the input port and the switched cap...  相似文献   

18.
Ellinger  F. 《Electronics letters》2004,40(22):1417-1419
A 26-34 GHz fully integrated CMOS down mixer is presented. At 30 GHz RF frequency and 2.5 GHz IF frequency, 50 /spl Omega/ terminations, 5 dBm LO and 1.2 V/spl times/17 mA supply power, the circuit yields a conversion loss of 2.6 dB, an SSB NF of 13.5 dB and an IIP3 of 0.5 dBm.  相似文献   

19.
张浩  李智群  王志功 《半导体学报》2010,31(11):115008-8
本文给出了一个应用于GPS、北斗、伽利略和Glonass四种卫星导航接收机的高性能双频多模射频前端。该射频前端主要包括有可配置的低噪声放大器、宽带有源单转双电路、高线性度的混频器和带隙基准电路。详细分析了寄生电容对源极电感负反馈低噪声放大器输入匹配的影响,通过在输入端使用两个不同的LC匹配网络和输出端使用开关电容的方法使低噪声放大器可以工作在1.2GHz和1.5GHz频带。同时使用混联的有源单转双电路在较大的带宽下仍能获得较好的平衡度。另外,混频器采用MGTR技术在低功耗的条件下来获得较高的线性度,并不恶化电路的其他性能。测试结果表明:在1227.6MHz和1557.42MHz频率下,噪声系数分别为2.1dB和2.0dB,增益分别为33.9dB和33.8dB,输入1dB压缩点分别0dBm和1dBm,在1.8V电源电压下功耗为16mW。  相似文献   

20.
A 16-46 GHz mixer using broadband balun fabricated in standard 0.18-mum CMOS process is demonstrated. The broadside-coupled balun with wide bandwidth and low insertion loss utilizes the inherent 3D multilayer structure in CMOS process. The mixer exhibits radio frequency bandwidth from 16 to 46 GHz with a conversion loss ranging from 13 plusmn 1.5 dB, and achieves bandwidth over 103% with a compact chip size of 0.24 mm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号