首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A methodology is presented to predict the cycles to crack initiation in a notched fibre metal laminate subjected to cyclic loading. The methodology contains four steps. First, the far-field metal layer stress cycle is obtained using classical laminate theory. Second, the peak stress cycle is estimated from a combination of a handbook solution for the stress concentration factor in a finite isotropic plate, and analytical solutions for the stress concentration for equal situations in infinitely large plates. The third step is to adapt the amplitude of the peak stress cycle to the characteristics of S–N data for monolithic material from the literature to allow for the cycles to initiation to be read from the S–N curve for each metal layer.In contrast to what can be found hitherto in the literature about predicting the cycles to fatigue crack initiation in fibre metal laminates, the authors of this paper leave no obscurities but rather attempt to bring understanding of the complete path from situation to prediction.Test results from the literature for Glare 4B-3/2-0.3 have been replicated using the aforementioned methodology. It is shown that it can accurately predict the number of cycles to crack initiation, although the S–N data that is used for the predictions dictates the obtained accuracy. The closer the stress cycle value of the S–N data is to the value of the case analysed, the higher the accuracy obtained. Such a trend was not observed for the stress concentration factor of the S–N curves used, although a choice for S–N data with a different stress concentration factor can cause a significant change in precision. The method is also shown to work for several other fibre metal laminates.  相似文献   

2.
It is crucial to understand the characteristic fatigue crack initiation and its growth mechanisms, as well as the relationship between the mechanical properties and the fatigue damage evolution in fibre metal laminates (FMLs). Two types of FML were studied in this work: a polyacrylonitrile‐based carbon fibre epoxy matrix composite sandwiched by Ti‐6Al‐4V (Ti‐alloy) sheets (IMS60‐Ti) and a pitch‐based carbon fibre epoxy matrix composite sandwiched by Ti‐alloy sheets (K13D‐Ti). The static and fatigue mechanical properties of IMS60‐Ti and K13D‐Ti were investigated. The increased failure strain of the FML was greater than that of carbon fibre‐reinforced polymer (CFRP) matrix composites. The fatigue life of IMS60‐Ti was much longer than that of K13D‐Ti. The fatigue damage process in IMS60‐Ti was related to the fatigue creep behaviour of the Ti‐alloy face sheet and mode II cracking at the CFRP/Ti‐alloy interface, and the damage in K13D‐Ti was related to the K13D CFRP laminate.  相似文献   

3.
The crack growth behaviour of hybrid boron/glass/aluminium fibre metal laminates (FMLs) under constant‐amplitude fatigue loading was investigated. The hybrid FMLs consist of Al 2024‐T3 alloy as the metal layers and a mixture of boron fibres and glass fibres as the fibre layers. Two types of boron/glass/aluminium laminates were fabricated and tested. In the first type, the glass fibre/prepreg and the boron fibre/prepreg were used separately in the fibre layers, and in the second type, the boron fibres and the glass fibres were uniformly mingled together to form a hybrid boron fibre/glass fibre prepreg. An analytical model was also proposed to predict the fatigue crack growth behaviour of hybrid boron/glass/aluminium FMLs. The effective stress intensity factor at a crack tip was formulated as a function of the remote stress intensity factor, crack opening stress intensity factor, and the bridging stress intensity factor. The bridging stress acting on the delamination boundary along the crack length was also calculated based on the crack opening relations. Then, the empirical Paris‐type fatigue crack growth law was used for predicting the crack growth rates. A good correlation between the predicted and experimental crack growth rates has been obtained.  相似文献   

4.
This paper presents a new numerical approach for predicting fatigue crack growth in fiber-metal laminate (FML). Cohesive elements are used to express the complicated damage consisting of transverse cracking, splitting, and interlaminar delamination. The damage growth in the cohesive elements due to cyclic loading is represented by the conventional damage-mechanics model. The simulation was applied to notched Ti/CFRP hybrid laminates of two stacking configurations. In both cases, the crack growth rate in the titanium layer and the delamination shape agreed well with experiments reported in the literature. Complementary analysis for crack extension in the metal sheet is performed out of consideration of the damage in internal FRP layers. The numerical results demonstrated that the underlying damage modes in the FRP layer must be taken into account to predict the fatigue crack growth at the metal layer in FMLs.  相似文献   

5.
To extend the predictive capability of existing crack growth models for fibre metal laminates under constant amplitude fatigue loading to variable-amplitude loading, further research on variable-amplitude fatigue mechanisms in fibre metal laminates is necessary. In response to this need, an experimental study into the effects of multiple overloads, underloads and various block-loading sequences on crack growth in the fibre metal laminate Glare was investigated. Crack growth retardation effects were observed in the tests; however, the magnitude of these effects was lower than seen in monolithic aluminium because of fibre bridging. As a result, predictions of the observed behaviour were attempted using an existing constant-amplitude fatigue crack growth model for Glare in combination with a linear damage accumulation law.  相似文献   

6.
ABSTRACT Fatigue crack growth of fibre reinforced metal laminates (FRMLs) under constant and variable amplitude loading was studied through analysis and experiments. The distribution of the bridging stress along the crackline in centre‐cracked tension (CCT) specimen of FRMLs was modelled numerically, and the main factors affecting the bridging stress were identified. A test method for determining the delamination growth rates in a modified double cracked lap shear (DCLS) specimen was presented. Two models, one being fatigue‐mechanism‐based and the other phenomenological, were developed for predicting the fatigue life under constant amplitude loading. The fatigue behaviour, including crack growth and delamination growth, of glass fibre reinforced aluminium laminates (GLARE) under constant amplitude loading following a single overload was investigated experimentally, and the mechanisms for the effect of a single overload on the crack growth rates and the delamination growth rates were identified. An equivalent closure model for predicting crack‐growth in FRMLs under variable amplitude loading and spectrum loading was presented. All the models presented in this paper were verified by applying to GLARE under constant amplitude loading and Mini‐transport aircraft wing structures (TWIST) load sequence. The predicted crack growth rates are in good agreement with test results.  相似文献   

7.
Fatigue life calculation of notched components based on the elastic‐plastic fatigue fracture mechanics The life of notched components is subdivided into the pre‐crack, or crack‐initiation, and crack propagation phases within and outside notch area. It is known that a major factor governing the service life of notched components under cyclic loading is fatigue crack growth in notches. Therefore a uniform elastic‐plastic crack growth model, based on the J‐Integral, was developed which especially considers the crack opening and closure behaviour and the effect of residual stresses for the determination of crack initiation and propagation lives for cracks in notches under constant and variable‐amplitude loading. The crack growth model will be introduced and verified by experiments.  相似文献   

8.
Fibre metal laminates (FMLs), such as glass reinforced aluminium (GLARE), are a family of materials with excellent damage tolerance and impact resistance properties. This paper presents an evaluation of the low velocity impact behaviour and the post-impact fatigue behaviour of GLARE laminate adhesively bonded to a high strength aluminium alloy substrate as a fatigue crack retarder. The damage initiation, damage progression and failure modes under impact and fatigue loading were examined and characterised using an ultrasonic phased array C-scan together with metallography and scanning electron microscopy (SEM). After impact on the substrate, internal damage to the GLARE bonded on the opposite side of the substrate occurred in the form of fibre and matrix cracking. No delamination was detected at the GLARE/substrate bond. Before impact the bonded GLARE strap caused reductions in substrate fatigue crack growth rate of up to a factor of 5. After impact the retardation was a factor of 2. The results are discussed in terms of changes to the GLARE stiffness promoted by the impact damage.  相似文献   

9.
Under fatigue conditions fibre reinforced aluminium–lithium laminates do not respond in the same manner as monolithic aluminium alloys. The variation of fatigue crack growth rates with initial loading condition has been examined for both carbon and glass fibre reinforced laminates, and compared with the behaviour of unreinforced 8090 aluminium–lithium alloy for a range of conditions (different initial nominal stress intensity factor range, load range and reversed loading). During fatigue, cracks grow in the metal layers of these laminates whilst the fibres in the crack wake remain intact, bridging the crack faces. The fibre bridging mechanism, inherent in this laminate system, reduces the fatigue crack growth rate. The magnitude of the bridging effect appears to be inversely related to the applied load range. This relationship can account for the behaviour observed in the performed experiments. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

10.
基于增量塑性损伤理论与纤维增强金属层板疲劳裂纹扩展唯象方法, 推导出在拉-压循环加载下, 纤维增强金属层板疲劳裂纹扩展速率预测模型。并通过玻璃纤维增强铝合金层板在应力比R=-1,-2的疲劳裂纹扩展实验对预测模型进行验证。结果表明, 纤维增强铝合金层板疲劳裂纹扩展的压载荷效应分为两种情况: 在有效循环应力比RC>0时, 表现为压载荷对铝合金层所承受残余拉应力的抵消作用; 当RC<0时, 表现为压载荷抵消残余拉应力后, 对纤维增强铝合金层板金属层的塑性损伤, 对疲劳裂纹扩展存在促进作用。纤维铝合金层板疲劳裂纹扩展的压载荷效应不可忽略, 本文中得出的在拉-压循环加载下疲劳裂纹扩展速率预测模型与实验结果符合较好。  相似文献   

11.
硅酸铝纤维增强铝基复合材料的疲劳断裂特征   总被引:1,自引:0,他引:1       下载免费PDF全文
采用压力铸造法, 制得Al2O3?SiO2短纤维增强的铝合金复合材料, 对其弯曲疲劳性能进行了测试, 并详细观察了疲劳裂纹的形成及扩展方式。结果表明: Al2O3?SiO2f/ ZL 108复合材料存在 多种疲劳源; 疲劳裂纹的扩展是通过主裂纹与裂尖前方孔洞的相互联接而进行的, 是不连续的, 沿着纤维及渣球密集的路径扩展; 疲劳过程中主裂纹的形成消耗了大部分的疲劳寿命, 一旦主裂纹形成就快速扩展瞬间断裂。该复合材料的断裂宏观上是脆性的, 但微观上显示出塑性的特征。  相似文献   

12.
Fracture mechanisms and fracture mechanics at ultrasonic frequencies   总被引:2,自引:0,他引:2  
Performing fatigue tests at ultrasonic frequencies, e.g. 20 000  Hz, allows one to perform experiments beyond 109 and 1010 cycles within half a day or a week, respectively. The testing technique has led to the construction of fatigue machines of high technical standard. Use of the ultrasound technique to study the mechanisms of crack initiation in pure metal single crystals, in cast alloys with voids being crack initiation sites, and in complicated fibre-reinforced laminates is reported. Likewise, use of ultrasonic loading to study the mechanisms of crack propagation is discussed, as well as LEFM principles; especially when these principles cannot be applied. It is shown how crack growth retardation with increasing crack length is attained in fibre-reinforced laminates by the effect of fibre bridging. Additional experimental possibilities, e.g. random loading, variation of mean load, superposition of shear loads, variation of temperature and environment, and not only axial but also torsional loading at ultrasonic frequency, and recent research results are discussed.  相似文献   

13.
Ti/CFRP (titanium/carbon fibre reinforced polymer) fibre metal laminates (FMLs) are composed of titanium sheets and carbon fibres reinforced PMR (polymerization of monomeric reactants) type polyimide resin. Due to the outstanding heat resistance of the material, it can be used in hypersonic aircraft applications. Fatigue cracks in the metal layer and delamination at metal/fibre interface may occur in long‐term high‐temperature use processes. However, the behaviour of the fatigue failure at high temperatures has not been investigated. A temperature‐dependent equation has not been presented to predict the crack growth behaviour at high temperatures. In this study, to investigate the crack propagation and delamination behaviours, fatigue crack growth rate tests using tension‐tension loads at 25°C, 80°C, 120°C, and 150°C were conducted in accordance with ASTM E647‐15e1. The results indicated that the variation in fatigue crack growth rate could be described by a modified temperature‐dependent Paris equation. Interfacial strength and tensile strength may influence fatigue failure at high temperatures. Hence, these strength values were also obtained to analyse the mechanism of fatigue behaviour. The delamination area increased exponentially with temperature due to the weakening of the Ti/CFRP interface, and delamination was invariably generated on the microcracks of the titanium layers.  相似文献   

14.
The effect of fibre orientation and laminate stacking sequence on the tensile and fatigue behaviour of SCS-6/Ti 15-3 composites were investigated. The laminates used in this study were: (90)6, (0/ ± 45)s, (0/90)s, and (90/ +-45)s. The initiation and progression of microstructural damage at various stress levels was thoroughly characterized. It was found that fatigue life at high applied stresses were controlled by fibre fracture; progressive damage involving fibre fracture, interfacial debonding and matrix cracking became dominant at low applied stresses. Observation of the damage mechanisms in the angle-ply laminates under cyclic loading suggests that increasing the fibre-matrix bonding strength may improve the load carrying capability and fatigue life of laminates containing off-axis plies.  相似文献   

15.
《Composites》1993,24(2):113-121
An analytical micromechanics-based strength prediction methodology was developed to predict failure of notched metal-matrix composites. The stress/strain behaviour and notched strength of two metal-matrix composites, boron/aluminium (B/Al) and silicon carbide/titanium (SCS-6/Ti-15-3), were predicted. The prediction methodology combines analytical techniques ranging from a three-dimensional finite element analysis of a notched specimen to a micromechanical model of a single fibre. In the B/Al laminates, a fibre failure criterion based on the axial and shear stress in the fibre accurately predicted laminate failure for a variety of lay-ups and notch-length-to-specimen-width ratios with both circular holes and sharp notches when matrix plasticity was included in the analysis. For the SCS-6/Ti-15-3 laminates, a fibre failure criterion based on the axial stress in the fibre correlated well with experimental results for static and post-fatigue residual strengths when fibre/matrix debonding and matrix cracking were included in the analysis. The micromechanics-based strength prediction methodology presented here offers a direct approach to strength prediction by modelling behaviour and damage on a constituent level, thus explicitly including matrix non-linearity, fibre/matrix interface debonding and matrix cracking.  相似文献   

16.
Multiple fatigue crack growth behaviour has been studied in quasi-isotropic GFRP laminates under constant amplitude fatigue loading conditions. Characteristics of fatigue crack growth in off-axis plies have been described and comparisons have been made between quasi-static and fatigue crack growth behaviour. Careful monitoring of individual fatigue cracks reveals three distinct stages of crack growth including initiation, steady-state crack growth (SSCG) and crack interaction and saturation. Stress redistribution due to matrix cracking and the associated stiffness reduction have been simulated using finite element models. Strain energy release rates associated with the off-axis matrix cracking have also been obtained and correlated with the measured fatigue crack growth rates.  相似文献   

17.
Abstract Fatigue tests with axial tension loading ( R = 0.1) have been performed on aluminum alloy laminates having 8 and 22 layers. The laminates were similar to those previously reported for bending fatigue, having 7075–T6 layers joined by Hysol EA9410 epoxy. Both unnotched and notched (K t = 2.42) specimens were tested.
Fatigue lifetimes for both 8- and 22-layer laminates were significantly less than for monolithic specimens tested for comparison, the differences increasing as the maximum stress decreased. This was true for both the notched and unnotched tests and is the reverse of the trends previously found in bending. While the unexpected inferiority of laminates in tension fatigue appears to be at least partially a result of material variability, it is also evident that changing the type of loading can have unpredictable effects on the comparative fatigue performance of laminates. For both unnotched and notched laminates, different layers continued to crack at different locations, demonstrating the uncoupled nature of the fatigue process in the various layers.  相似文献   

18.
The fatigue crack growth behaviour of hybrid S2‐glass reinforced aluminium laminates (Glare) with multiple open holes was investigated experimentally and analytically. It was observed that the presence of multiple‐site fatigue damage would increase crack growth rates in the metal layers as two propagating cracks converged. An analytical crack growth model was established for predicting crack growth rates based on empirical Paris equation. The effective stress intensity factor at crack tips is a function of mode I far‐field stress intensity factor, crack opening stress intensity factor and effective non‐dimensional stress intensity factor that incorporated the crack‐bridging effect in fibre metal laminates. The predicted results under different applied stress can capture the trend of averaged crack growth rates in experiments, although deviation exists in the predictions.  相似文献   

19.
This paper presents a theoretical approach for predicting transverse cracking behavior in a cross-ply laminate with a thick transverse ply under variable amplitude loads for which the cracks grow instantaneously, or very quickly, across the specimen width. The transverse crack density was derived on the basis of the slow crack growth (SCG) concept using the Paris law in conjunction with the Weibull distribution for a brittle material subjected to multi-stage cyclic loading. A fracture criterion obtained was related with the empirical rules by Miner and Broutman & Sahu. Next, the probabilistic SCG model was applied to transverse cracking in a cross-ply laminate under multi-stage cyclic loading. The two-stage fatigue tests with various loading sequences and amplitudes were conducted for carbon fibre reinforced plastic (CFRP) cross-ply laminates in addition to single-stage fatigue tests for various maximum stresses. The experiment results were compared with the predictions to verify the validity of the model.  相似文献   

20.
Stress corrosion cracking of GRP pultruded rods has been investigated in 0.0001 to 5.0 N hydrochloric acid environments under bending and tensile loading modes. Crack initiation takes place at exposed glass fibres in the surface of the rod, and crack propagation is planar and at right angles to the rod axis. Leaching of calcium and aluminium from the fibres takes place during the cracking process, and time-to-failure is dependent on the acid concentration, the stress level and the ease of access of the acid to the glass fibre surface. Possible mechanisms of crack propagation through the glass fibres and resin are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号