共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
随着电力系统智能化的不断发展,高精度的短期电力负荷预测成为电力系统经济运行研究的重要课题之一。在介绍了卡尔曼滤波原理的基础上,给出了卡尔曼滤波一步递推方程组。结合电力系统负荷情况,建立了卡尔曼滤波短期负荷预测模型,并对其进行预测。通过引入假期因子提出了改进的卡尔曼滤波算法,提高了卡尔曼滤波预测精度,验证了改进算法的正确性和有效性。 相似文献
3.
4.
电力系统短期负荷预测是一项非常重要的工作,准确的短期负荷预测对于电力系统经济、安全、可靠的运行具有特别重要的意义.随着电力系统的日趋复杂化,特别是电力市场的逐步深入,短期负荷预测被赋予了更高的要求.提出了基于负荷日周期性进行前后向外推的数据预处理新方法,为短期负荷预测模型利用这些历史数据奠定了基础.最小二乘支持向量机是新一代机器学习方法,将其应用于电力系统短期负荷预测,在充分利用日周期性和同时刻负荷相近性的基础上,提出了基于最小二乘支持向量机回归算法(LSSVR)的短期负荷预测点模型.该模型通过采用不同天同时刻的负荷样本训练LSSVR来获取负荷的最优线性回归函数,实现了在最小化负荷样本点误差的同时,缩小模型泛化误差的上界,获取了较好的负荷预测性能. 相似文献
5.
将正交最小二乘法(OLS)模糊模型用于电力系统短期负荷预测,着重于输入参数的选取。其推理系统模糊规则的生成、影响因素的选取和隶属度的确定均利用正交最小二乘法从历史数据中直接获得,从而克服了模糊推理系统的知识由咨询专家和经验来产生所造成的知识获取的“瓶颈“现象。实际算例表明,该方法有较高的预测精度,且运算速度快,具有较强的实用性。 相似文献
6.
7.
8.
9.
介绍了卡尔曼滤波的算法,给出了一套递推计算公式,将此算法应用于短期负荷预测,并针对负荷预测本身的特点对算法进行了改进,用两种算法进行了实际的负荷预测计算,取得了比较准确的预测结果。 相似文献
10.
介绍了卡尔曼滤波的算法,给出了一套递推计算公式,将此算法应用于短期负荷预测,并针对负荷预测本身的特点对算法进行了改进,用两种算法进行了实际的负荷预测计算,取得了比较准确的预测结果. 相似文献
11.
自适应卡尔曼滤波在电力系统短期负荷预测中的应用 总被引:11,自引:5,他引:11
将卡尔曼滤波原理运用于电力系统负荷预测通常是针对线性定常系统,并在定常噪声协方差的前提下进行,模型的灵敏度差和预报精度不高.作者考虑了电力系统负荷自身的变化特点,根据不同日期同一时刻的负荷历史数据建立了含有时变系数的负荷系统模型、观测模型和系统参数模型,采用两段自适应卡尔曼滤波方法,同时考虑噪声协方差对预测精度的影响,运用时变噪声统计估值器对噪声协方差进行自适应估计,用预测方程预测次日的负荷.结合实际电网数据进行的预测计算取得了较好的结果. 相似文献
12.
基于改进决策树算法的日特征负荷预测研究 总被引:9,自引:1,他引:9
针对决策树ID3算法的缺陷,提出了属性-值对的两次信息增益优化算法,该算法是ID3的改进算法,它能克服ID3算法在选取属性进行扩展时易偏向属性值多的属性及ID3算法属性间相关性考虑较少的缺点;通过对熵阈值的设定,采用预剪枝技术,又能部分克服ID3算法对噪音敏感的不足.该算法可用以生成日特征负荷决策树预测模型.该模型结合预测日的气象、星期等信息,可进行日特征负荷的预测.采用等深直方图分析思想,可对负荷变化率数据离散化,将层次聚类和信息熵相结合,对气象数据离散化.数据预处理后,通过属性-值对的2次信息增益优化算法生成负荷预测决策树模型,在给出预测日气象及星期信息后可对特征负荷进行预测,预测结果能够满足并超过负荷预测实用化标准的要求并具有较高的预测精度.如果将日24点或96点负荷及相应影响因素数据均用该算法进行模型训练,形成24个或96个预测模型,则可进行日24点或96点负荷预测. 相似文献
13.
14.
15.
基于电力负荷模式分类的短期电力负荷预测 总被引:9,自引:6,他引:9
根据历史数据集的基本知识建立一个基于模糊规则的电力负荷模式分类系统,在考虑规则的分类准确性和可解释性的情况下,利用遗传优化算法挑选出Pareto最优模式分类规则集用于电力负荷模式分类.并在仿真试验中,将此分类系统用于电力负荷预测,结果表明此分类系统具有较好的分类性能,可为电力负荷预测提供更为充分有效的历史数据,从而改善其负荷预测性能. 相似文献
16.
基于小波变换及最小二乘支持向量机的短期电力负荷预测 总被引:34,自引:7,他引:34
提出了采用小波变换和最小二乘支持向量机混合模型进行电力系统短期负荷预测的方法。首先基于小波多分辨率分析方法将负荷序列分解成具有不同频率特征的序列:然后根据分解后各分量的特点构造不同的支持向量机模型对各分量分别进行预测:最后对各分量预测信号进行重构得到最终预测结果。在构建支持向量机模型时考虑了气候因素的影响,并将其作为模型的一组输入点。实验结果表明基于该方法的负荷预测系统具有较高的预测精度。 相似文献
17.
18.
基于模糊多目标遗传优化算法的节假日电力负荷预测 总被引:10,自引:1,他引:10
多目标遗传优化算法的一个优点就是可在一次迭代计算中寻找到问题的多个非劣最优解。该文应用多目标遗传算法和关联规则算法提出一个基于模糊规则的电力负荷模式分类系统。在此分类系统中采用多目标遗传优化算法从众多模糊分类规则中自动挑选出具有较好识别性能和可解释性的模糊规则,并利用模糊关联规则挖掘通过启发式规则选择改善遗传算法的搜索性能。经仿真试验表明此分类系统具有较好的分类性能,可为节假日负荷预测提供更为充分的历史数据,从而改善其负荷预测性能。 相似文献
19.
基于相似日的神经网络短期负荷预测方法 总被引:8,自引:10,他引:8
人工神经网络是模拟人脑神经元结构、特性和大脑认知功能而构成的新型信号、信号处理系统。本文针对电力负荷短期预测问题,提出了一种基于相似日的神经网络预测方法,采用反向传播算法,考虑气象因素对负荷的影响,提高了学习效能,具有较好的预测精度。本方法很适合在短期负荷预测中使用,预测结果验证了上述结论。 相似文献
20.
缺电损失最小化减负荷算法的研究 总被引:1,自引:0,他引:1
在满足安全稳定限制的情况下,建立了寻求缺电损失最小的负荷减载模型和算法,以解决系统供电不足时的减负荷问题.该模型是具有等式和不等式约束的函数极值问题,属于最优潮流模型.该算法是在控制变量空间寻优的改进近似规划法:从初始可行的运行点开始,通过计算系统的状态变量对控制变量的灵敏度,将系统的目标函数和约束条件线性化,进行有效约束的筛选,以线性规划修正控制变量,进而解算潮流得到新的可行运行点.通过迭代收敛到最优解.并以IEEE-14节点系统和IEEE-30节点系统为试算系统,验证了该算法的有效性. 相似文献