首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 871 毫秒
1.
A computer code sphincs solves coupled phenomena of thermal hydraulics and sodium fire based on a multi-zone model. It deals with an arbitrary number of rooms, each of which is connected mutually by doorways and penetrations. With regard to the combustion phenomena, a flame sheet model and a liquid droplet combustion model are used for pool and spray fires, respectively, with the chemical equilibrium model based on the Gibbs free energy minimization method. The chemical reaction and mass and heat transfer are solved interactively. A specific feature of sphincs is detailed representation of thermalhydraulics of a sodium pool and a steel liner, which is placed on the floor to prevent sodium-concrete contact. The authors analyzed a series of pool combustion experiments, in which gas and liner temperatures are measured in detail. It has been found that good agreement is obtained and the sphincs code has been validated with regard to pool combustion phenomena. Further research needs are identified for pool spreading modeling considering thermal deformation of steel liner and measurement of pool fluidity property as a mixture of liquid sodium and reaction products. The sphincs code is to be used mainly in the safety evaluation of the consequence of a sodium fire accident in a liquid metal cooled fast reactor as well as fire safety analysis in general.  相似文献   

2.
钠冷快堆钠雾火事故三维数值模拟   总被引:6,自引:0,他引:6  
张斌  朱继洲  韩浪 《核动力工程》2005,26(2):105-109
针对钠冷快堆可能发生的钠雾火事故,开发和研制了一套用于钠火事故分析,能求解发生钠雾火事故后,事故空间3维的气体温度分布和化学成份分布的程序。本文详细介绍了分析求解钠雾火的燃烧模型和热传输模型,以及计算空间流场采用的计算方法和步骤,并将计算结果与试验值进行了比较:结果表明,二者符合较好。  相似文献   

3.
在钠冷快堆的安全评估中,分析钠泄露导致的池式钠火事故下燃烧产物的气溶胶行为尤为重要。本文采用将池式钠火燃烧模型与气溶胶动力学模型耦合的方式,开发了池式钠火事故下燃烧产物气溶胶行为分析程序REBAC-SFR,基于该程序模拟了SAPFIRE-D1和ABCOVE池式钠火实验,并与实验数据进行了对比。结果表明,本文开发的程序具有良好的可靠性和正确性,可为钠工艺间内池式钠火事故下燃烧产物气溶胶行为分析研究提供理论工具。   相似文献   

4.
杨红义  宋维 《原子能科学技术》2020,54(11):2113-2120
钠火是钠冷快堆的典型事故,钠火事故情景计算机模拟仿真是对钠火事故风险评价的有力工具。本文以常规火灾三维计算流体力学软件FDS为平台,增加钠火燃烧模型,包括燃烧热模型、燃烧速率模型、喷射液钠粒径分布模型等,完成了钠火情景模型的开发,并通过与SPHINCS钠火试验和计算结果的温度分布与氧气含量对比,验证了模拟技术和模型开发方案的可行性。本文的研究成果能为后续钠火仿真模拟程序的开发提供研究基础和经验参考。  相似文献   

5.
Sodium fire is a typical accident of sodium-cooled fast reactor. Simulation of sodium fire accident scenario by software is a powerful tool for risk assessment of sodium fire accident. In this paper, the conventional fire three-dimensional computational fluid dynamics software FDS was used as a platform to add a sodium fire combustion model, including combustion heat model, combustion rate model, spray liquid sodium particle size distribution model, etc., and complete the development of sodium fire scenario modeling analysis program. And through the comparison with SPHINCS sodium fire test and calculation results, the feasibility of the method and development plan was verified. The research results of this paper can provide the research basis and experience reference for the development of the subsequent sodium fire simulation program.  相似文献   

6.
During research and development work on the SNR-300 sodium-cooled fast reactor the consequences and confinement of sodium fires occurring in enclosures were studied. The behavior of liquid sodium during fires and the behavior of an inherently ready-for-operation protective system are described. Theoretical considerations on the behavior of burning liquid sodium are compared with experimental results. A protective system for large facilities is presented and the use of extinguishing powders is reviewed.  相似文献   

7.
钠冷快堆中喷雾钠火的计算分析   总被引:5,自引:0,他引:5  
根据钠冷快堆中喷雾钠火的特点建立了理论模型,编制了SSPRAY程序。该程序模拟钠喷雾燃料过程中钠滴的运动、钠和氧气的燃烧反应、热量传递和质量传递等瞬态过程。用该程序计算了气体和墙壁温度、气体压力、氧气摩尔份额、喷雾流燃烧速率和热量热递速率等主要参数。利用AI实验数据和美国SPRAY-3A的计算结果对程序进行了验证,结果符合较好。  相似文献   

8.
In the operation of the sodium-cooled fast reactor, the accident caused by the leakage and combustion of liquid sodium is common and frequent in sodium-related facilities. This paper is based on an experimental study of sodium fire in a columnar flow, which was carried out to focus on the burning characteristics by analyzing the temperature fields in the burner. The injection of 200 °C liquid sodium with the flux of 0.5 m3/h was poured into a 7.9 m3 volume stainless steel cylindrical burner to shape a sodium fire, and the data of temperature fields in the burner have been collected by dozens of thermocouples which are laid in the combustion space and sodium collection plate. These results show that the sodium fire in a columnar flow is composed of the foregoing centered columnar fire, the subsequent spray fire caused by atomization and the pool fire on the collection plate. The temperature close to the burning sodium flow maximally reaches up to 950 °C. The radial temperatures apart from the sodium flow are relatively low and generally about 200 °C, and maximally just 300 °C even when close to the sodium collection plate. The maximum temperature of the burning sodium dropping on the collection plate rises in the center of plate, about 528 °C. This study is helpful to evaluate the combustion characteristics, formation process and composing forms of the sodium fire in the sodium-related facilities.  相似文献   

9.
Sodium leak collection tray (LCT) is an efficient passive device used for the extinguishment of liquid sodium fire in case of an accidental leakage from the secondary circuit of a fast breeder reactor. The LCT essentially isolates the leaking sodium into closed containers where the resulting fire is extinguished due to limited availability of oxygen. The current work aims to highlight the combustion extinguishment characteristics of LCT through a lumped formulation by conserving the mass and energy of liquid sodium and constituent gases in various parts of the LCT. Here, the complex hydrodynamics of liquid sodium is emulated through a semi-analytical draining/sloshing model and its burning rates are predicted through a three-dimensional open pool combustion model for the tray region and a closed pool combustion model for the holdup vessel. These simulations evaluate the burning rates at discrete levels of liquid sodium which are subsequently interpolated to establish correlations involving instantaneous liquid levels and oxygen concentration. Using the correlations obtained from the draining and combustion models, the overall lumped formulation directly predicts the un-burnt sodium recoverable after the extinguishment of fire in the LCT. The predicted results of this model compare well with the available experimental data.  相似文献   

10.
A response surface model has been proposed to evaluate an aerosol release fraction during sodium pool fire in a liquid metal fast reactor (LMFR). Air containing aerosols are radiative and they influence the allocation of combustion heat from the flame to atmospheric gas or sodium pool. Hence, the aerosol release fraction needs to be quantified based on the behavior of the aerosols and physics of mass and heat transfer. However, the aerosol release fraction is one of user-specified parameters of computer codes for the sodium fire safety analysis of the LMFR. In the present study, a response surface model of the aerosol release fraction has been developed based on numerical experiments of aerosol dynamics. For developing the model, aerosol dynamic equation has been solved coupled with thermal-hydraulics and chemical reaction. The authors obtained good agreement of the aerosol release fraction between the numerical experiments and the past experiments. Therefore, the aerosol behavior model has been validated with regard to the pool combustion phenomena and is reasonably applicable to the numerical experiment. Three influential variables on the release fraction are identified as pool temperature, gas temperature and oxygen molar fraction in the air. The proposed response surface model is a quadratic expression of the influential variables and can be easily employed in the sodium fire analysis code.  相似文献   

11.
A computer code solves coupled phenomena of thermal hydraulics and sodium fire based on a multi-zone model. It deals with an arbitrary number of rooms, each of which is connected mutually by doorways and penetrations. With regard to the combustion phenomena, a flame sheet model and a liquid droplet combustion model are used for pool and spray fires, respectively, with the chemical equilibrium model based on the Gibbs free energy minimization method. The chemical reaction and mass and heat transfer are solved interactively. A specific feature of is detailed representation of thermalhydraulics of a sodium pool and a steel liner, which is placed on the floor to prevent sodium–concrete contact. The authors analyzed a series of pool combustion experiments, in which gas and liner temperatures are measured in detail. It has been found that good agreement is obtained and the code has been validated with regard to pool combustion phenomena. Further research needs are identified for pool spreading modeling considering thermal deformation of steel liner and measurement of pool fluidity property as a mixture of liquid sodium and reaction products. The code is to be used mainly in the safety evaluation of the consequence of a sodium fire accident in a liquid metal cooled fast reactor as well as fire safety analysis in general.  相似文献   

12.
A response surface model of the luminous flame emissivity of sodium pool fire has been proposed for use in safety analysis computer codes of a liquid metal fast reactor. The liquid sodium burns in air resulting in not only heat generation but also release of sodium oxide aerosols of sub-micron diameters. Aerosols levitating in air are radiative and they influence the allocation of combustion heat from the flame to atmospheric gas or sodium pool. The emissivity of the flame needs to be quantified, as it is one of user-specified parameters of the computer codes for the sodium fire analysis. The response surface model of the flame emissivity is developed based on numerical experiments on the physics of mass and heat transfer and behavior of the aerosol. Thermal-hydraulic equations have been solved coupled with aerosol dynamics and chemical reaction. Three influential variables on the emissivity are identified as pool temperature, gas temperature and oxygen molar fraction in the air. It has been found that the emissivity is calculated reasonably as a function of the three variables. The proposed response surface model can be easily employed in the sodium fire analysis codes because it is a simple quadratic expression. For the safety evaluation of the sodium fire, combined use is recommended of the proposed model and the lumped-mass zone model code.  相似文献   

13.
钠管道泄漏继而发生钠的燃烧为钠冷快堆特有的事故。在喷雾钠火模型和池式钠火模型基础上,将钠喷雾燃烧和池式燃烧进行了耦合,并针对钠冷快堆钠工艺间的结构特点,最终开发了混合钠火计算程序COMSFIRE。使用该程序计算了FAUNA喷雾钠火试验和CADARACHE池式钠火试验,并与试验结果和部分程序计算结果进行了对比。同时设计了混合燃烧算例,并使用该程序与CONTAIN-LMR程序进行了对比。通过计算结果的对比和分析,初步验证了程序的正确性。  相似文献   

14.
Sodium fire caused by sodium pipe leakage is the specific accident for sodium-cooled fast reactor. Based on the sodium spray fire model and sodium pool fire model, sodium spray fire and sodium pool fire were coupled together. A sodium combined fire code COMSFIRE was finally developed based on the structure characteristic of sodium technology room in sodium-cooled fast reactor. FAUNA sodium spray fire experiment and CADARACHE sodium pool fire experiment were calculated with the developed COMSFIRE code, the results of which were compared with the experiments results and some other code results. A combined fire case was designed, and the results were compared with CONTAIN-LMR code. The correctness of the COMSFIRE code was primarily proved through the comparison and analysis.  相似文献   

15.
Combustion of liquid sodium is of interest in the safety assessment of liquid metal cooled fast breeder reactor systems. In the present study, a detailed thermodynamic analysis of sodium-air system has been carried out for equivalence ratios in the range of 0.1–1.9 and for flame temperatures ranging from 1100 to 1950 K. In addition to this, decomposition calculations presented for product aerosols such as sodium oxide (Na2O), sodium dioxide (Na2O2) and sodium hydroxide (NaOH) in normal oxygen and oxygen-deficient conditions (which are some form of phase diagrams of these aerosols) are used rigorously to find out the predominant aerosol that should be present in and outside the burn pan for a pool fire of liquid sodium. The conditions of occurrence of various sodium oxides under two different fire conditions namely pool and jet fires have been worked out. It is established that heterogeneous reactions involving sodium oxide are responsible for the formation of sodium dioxide and sodium hydroxide. It is necessary to take account of the rates of these heterogeneous reactions as well as the equivalence ratio-dependent decomposition calculations to correctly estimate the aerosol product mix in practical situations.  相似文献   

16.
钠冷快堆中池式钠火的计算分析   总被引:2,自引:0,他引:2  
文章论述了根据池式钠火的特点建立了理论模型 ,编制了SPOOL程序。该程序模拟钠燃烧过程中钠和氧气的化学反应 ,钠燃烧热在各种介质中不同方式的传递 ,钠气溶胶的产生、沉积 ,以及在各种通风条件下多种介质的质量和能量交换等瞬态过程 ,描述了钠燃烧过程中各种特征参数随时间的变化。其主要的计算参数包括房间内气体的压力和温度、房间建筑结构的温度、钠气溶胶质量浓度等等。用俄罗斯别洛雅尔斯克核电站实验和法国卡桑德拉 3号实验的数据 ,对SPOOL程序进行验证的结果表明 ,该程序的计算结果可信。该程序为国内钠冷快堆中池式钠火事故的安全分析提供了分析方法  相似文献   

17.
对钠冷快堆喷雾钠火计算中使用的传统球状钠滴模型进行了改进,采用表面带有锥状突起的钠滴新模型,使模拟更接近于燃烧实际现象。根据钠滴燃烧过程中表面氧化、预燃和燃烧3个阶段的不同规律,分别建立了数学模型,通过引入单位时间内参与氧化反应与发生气化的钠的质量比γ,模拟计算了钠滴在不同初始温度(200~500 ℃)和不同氧气浓度(4%~20%)下的燃烧温度特性。仿真结果与实验数据吻合较好,并分析了γ的变化规律。  相似文献   

18.
In the operation of the sodium-cooled fast reactor, the leakage and fire accident of liquid sodium is common and it is frequent in sodium-related facilities. This study focuses on the combustion and suppression characteristics of sodium fire in a columnar flow. Liquid sodium (250 °C) is injected into a 7.9 m3 cylindrical chamber at a flow rate of about 1.0 m3/h to create a columnar sodium fire, and 18.4 kg class D extinguishing powder is sprayed after the liquid sodium injection. The temperature in the chamber space and sodium collection plate and the heat release rate from sodium fire are measured and analyzed. Based on the temperature data the sodium fire under suppression could be divided into four phases of dropping sharply, continuously remaining lower, rising and declining mildly, and depressing. The sodium fire in the space could be suppressed and cooled down if the extinguishing agent could spray in the early period of the liquid sodium injection. The extinguishing agent could suppress the combustion and spreading of liquid sodium dropping on the collection plate, limit the pool combustion area and postpone the commencement of sodium pool burning in spite of its later re-ignition happening. This study promises to evaluate the combustion and suppression characteristics of sodium fire in the sodium-related facilities.  相似文献   

19.
钠火事故是钠冷快堆的典型和特有事故,且很可能是反应堆总风险的主要贡献因素之一。本文在介绍钠火事故特点的基础上,研究使用概率安全分析评价钠冷快堆钠火风险的方法。以中国实验快堆反应堆大厅钠火事故为实例,计算得到反应堆大厅钠火导致的堆芯损坏频率为1.19×10-8/(堆•年)。在此基础上进一步讨论目前钠火概率安全评价中尚需研究的关键问题。  相似文献   

20.
将雾状钠火中钠滴的燃烧分成预燃阶段和燃烧阶段,利用雾状钠火程序计算得到钠滴燃烧比率和时间的关系曲线,分别用幂函数、指数函数和线性函数对曲线进行拟合,拟合效果较好。拟合函数中包含钠滴下落时间和钠滴最大燃烧比率等参数,这些参数可通过钠滴下落燃烧试验或雾状钠火程序计算得到。通过推导得到了雾状钠火燃烧和单个钠滴燃烧的关系,钠滴燃烧比率的拟合函数被用来模拟雾状钠火燃烧的过程,包括用于计算已燃烧的钠质量、空气中未燃烧的钠质量、进入钠池的钠质量和雾状钠火的燃烧速率。当雾状钠火燃烧过程中钠泄漏流量恒定不变时,空气中未燃烧的钠质量和钠泄漏流量呈正比,雾状钠火的燃烧速率和钠泄漏流量呈正比。雾状钠火的燃烧速率和钠火造成的事故工艺间内的温度与压力变化直接相关。雾状钠火的燃烧速率被用来求解钠气溶胶的生成速率、钠燃烧火焰层和空气之间的传热、钠燃烧火焰层和墙壁之间的传热。总之,使用简单的函数模拟钠滴的燃烧比率曲线,将雾状钠火燃烧当成事故工艺间的热源和钠气溶胶源作为输入,便可模拟雾状钠火的整个燃烧过程,计算得到工艺间温度、压力和钠气溶胶浓度的变化。钠滴的燃烧比率曲线、雾状钠火的燃烧速率曲线还可与试验数据进行对比验证后作为雾状钠火模拟的输入,这种模拟方法可用于钠火事故安全分析中雾状钠火的模拟。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号