首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of very high-strength levels in many alloy steels is achieved by a secondary hardening reaction. In high Co-Ni steels containing the strong carbide-forming elements Mo, Cr, and W, secondary hardening is accomplished by the precipitation of fine-scale M2C alloy carbides. Coarsening resistance of the M2C precipitates depends on the alloy content of these elements, and there should be an addition to the alloy of these carbide-forming elements which optimizes the M2C coarsening resistance. Current Lifshitz-Slyozov-Wagner (LSW) theory[2,3] cannot properly be used to describe, the coarsening behavior of multicomponent carbides, which involves concentrations and diffusivities of two or more solutes and nonspherical carbide morphologies. A model is introduced for the coarsening resistance of multicomponent carbides. This model treats the coarsening of shape-preserving particle and is applicable to rodlike particles.  相似文献   

2.
A model for the coarsening resistance of multicomponent carbides was used to study the effect of Mo and Cr on the coarsening kinetics of M2C carbides in commercial AF1410 and experimental alloy steels. Experimental studies of coarsening behavior of the carbides in these steels have been made by using transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The measured coarsening rate constant agrees with model predictions within a factor of 2 to 3. The coarsening kinetics of M2C carbides in these alloys is found to be controlled by the volume diffusion of alloying element M. A Cr-Mo alloy steel with the predicted optimum composition showed the slowest coarsening kinetics and highest hardness at long tempering times.  相似文献   

3.
In an effort to reduce material cost, experimental steel alloys were developed that incorporated Cu precipitation in lieu of costly Co alloying additions in secondary hardening carburizing gear steels. This work utilizes three-dimensional atom probe tomography to study one of these prototype alloys and quantify the nanoscale dispersions of body-centered cubic (bcc) Cu and M2C alloy carbides used to strengthen these steels. The temporal evolution of precipitate, size, morphology, and interprecipitate interactions were studied for various tempering times. Findings suggest that Cu precipitation does act as a catalyst for heterogeneous nucleation of M2C carbides at relatively high hardness levels; however, the resultant volume fraction of strengthening carbides was noticeably less than that predicted by thermodynamic equilibrium calculations, indicating a reduced potency compared with Co-assisted precipitation. Microstructural information such as precipitate size and volume fraction was measured at the peak hardness condition and successfully used to recalibrate alloy design models for subsequent alloy design iterations.  相似文献   

4.
The effects of silicon additions up to 3.5 wt pct on the as-cast carbides, as-quenched carbides, and as-tempered carbides of high-speed steels W3Mo2Cr4V, W6Mo5Cr4V2, and W9Mo3Cr4V were investigated. In order to further understand these effects, a Fe-16Mo-0.9C alloy was also studied. The results show that a critical content of silicon exists for the effects of silicon on the types and amount of eutectic carbides in the high-speed steels, which is about 3, 2, and 1 wt pct for W3Mo2Cr4V, W6Mo5Cr4V2, and W9Mo3Cr4V, respectively. When the silicon content exceeds the critical value, the M2C eutectic carbide almost disappears in the tested high-speed steels. Silicon additions were found to raise the precipitate temperature of primary MC carbide in the melt of high-speed steels that contained d-ferrite, and hence increased the size of primary MC carbide. The precipitate temperature of primary MC carbide in the high-speed steels without d-ferrite, however, was almost not affected by the addition of silicon. It is found that silicon additions increase the amount of undis-solved M6C carbide very obviously. The higher the tungsten content in the high-speed steels, the more apparent is the effect of silicon additions on the undissolved M6C carbides. The amount of MC and M2C temper precipitates is decreased in the W6Mo5Cr4V and W9Mo3Cr4V steels by the addition of silicon, but in the W3Mo2Cr4V steel, it rises to about 2.3 wt pct.  相似文献   

5.
The formation of secondary carbides during tempering of H11 hot work steels at 898 K (625 °C) was studied by transmission electron microscopy (TEM) and related to the previously established effects of Si content on mechanical properties. Lower Si contents (0.05 and 0.3 pct Si) and higher Si contents (1.0 and 2.0 pct Si) were observed to yield different carbide phases and different particle distributions. Cementite particles stabilized by Cr, Mo, and V in the lower Si steels were found to be responsible for similar precipitation hardening effects in comparison to the M2C alloy carbides in the higher Si steels. The much higher toughness of the lower Si steels was suggested to be due to a finer and more homogeneous distribution of Cr-rich M7C3 carbides in the interlath and interpackage regions of the quenched and tempered martensite microstructure. The present effects of Si content on the formation of alloy carbides in H11 hot work steels were found to be the result of the retarding effect of Si on the initial formation of cementite, well known from the early tempering stages in low alloy steels.  相似文献   

6.
The role of alloy composition in determining the microstructure and microchemistry of a series of related high speed steels has been investigated by a combination of analytical electron microscopy and atom-probe field ion microscopy. The four steels which were investigated (M2, ASP 23, ASP 30 and ASP 60) cover a large range of C, V and Co contents. Excepting the Co content, the composition of primary MC and M6C carbides and as-hardened martensite was similar in all four alloys and the major effect of increasing the content of C and V was to increase the volume fraction of MC primary carbides. Precipitation of proeutectoid carbides (mainly MC and M2C) occurred during hardening of all four steels and the extent of this was greatest in the highly alloyed ASP 60. Tempering at 560°C resulted in the precipitation of extremely fine dispersions of MC and M2C secondary carbides with very mixed compositions in all four steels. It was found that, as well as hindering the formation of autotempered M3C in the as-hardened martensite, additions of Co refined the secondary carbide dispersion and delayed overaging reactions. Overaging at 600°C resulted in the precipitation of M3C, M6C and M23C6 at the expense of the fine MC and M2C secondary carbide dispersion.  相似文献   

7.
This study was aimed at developing low-alloy steels for nuclear reactor pressure vessels by investigating the effects of alloying elements on mechanical and fracture properties of base metals and heat-affected zones (HAZs). Four steels whose compositions were variations of the composition specification for SA 508 steel (class 3) were fabricated by vacuum-induction melting and heat treatment, and their tensile properties and Charpy impact toughness were evaluated. Microstructural analyses indicated that coarse M3C-type carbides and fine M2C-type carbides were precipitated along lath boundaries and inside laths, respectively. In the steels having decreased carbon content and increased molybdenum content, the amount of fine M2C carbides was greatly increased, while that of coarse M3C carbides was decreased, thereby leading to the improvement of tensile properties and impact toughness. Their simulated HAZs also had sufficient impact toughness after postweld heat treatment (PWHT). These findings suggested that the low-alloy steels with high strength and toughness could be processed by decreasing carbon and manganese contents and by increasing molybdenum content.  相似文献   

8.
In 4Mo, 6W, 2Mo3W, 2Mo2Cr, and 3W2Cr alloy steels, which cointain alloying elements, such as Mo, W and Cr, contributing to the secondary hardening by forming M2C type carbide, the secondary hardening and fracture behavior were studied. Molybdenum had a strong effect on secondary hardening, while W had a very weak effect on it but delayed the overaging. The MoW steel exhibited both moderately strong hardening and considerable resistance to overaging. On the other hand, the secondary hardening effect was diminished by the Cr addition, because the cementite of M3C type was stabilized at higher temperatures and the formation of M2C carbides was thus inhibited. Although the Cr addition had no merit in the secondary hardening itself, it eliminated the secondary hardening embrittlement (SHE). This was observed as a severe intergranular embrittlement due to the impurity segregation for the Mo and MoW steels and as a decrease in upper shelf energy for W steel, even in the overaged condition.  相似文献   

9.
The results of an experimental study on the grain coarsening behavior, M23C6 carbide precipitation, and secondary MC carbide precipitation kinetics in UDIMET 520 are presented. Primary MC carbides and M (C, N) carbonitrides strongly influence the grain growth, with their dissolution near 1190 °C and 1250 °C, respectively, resulting in two distinct grain coarsening temperatures (GCTs). M23C6 carbides precipitate in the alloy over a wide range of temperatures varying between 600 °C and 1050 °C. A discrete M23C6 grain boundary carbide morphology is observed at aging temperatures below 850 °C. Secondary MC carbides formed at temperatures ranging between 1100 °C and 1177 °C, in specimens in which primary MC dissolution had been obtained at solution treatment temperatures of 1190 °C to 1250 °C. A schematic time-temperature-transformation (TTT) diagram for understanding the microstructure and precipitation inter-relationships in UDIMET 520 alloy is also presented.  相似文献   

10.
The effects of alloying additions and austenitizing treatments on secondary hardening and fracture behavior of martensitic steels containing both Mo and W were investigated. The secondary hardening response and properties of these steels are dependent on the composition and distribution of the carbides formed during aging (tempering) of the martensite, as modified by alloying additions and austenitizing treatments. The precipitates responsible for secondary hardening are M2C carbides formed during the dissolution of the cementite (M3C). The Mo-W steel showed moderately strong secondary hardening and delayed overaging due to the combined effects of Mo and W. The addition of Cr removed secondary hardening by the stabilization of cementite, which inhibited the formation of M2C carbides. The elements Co and Ni, particularly in combination, strongly increased secondary hardening. Additions of Ni promoted the dissolution of cementite and provided carbon for the formation of M2C carbide, while Co increased the nucleation rate of M2C carbide. Fracture behavior is interpreted in terms of the presence of impurities and coarse cementite at the grain boundaries and the variation in matrix strength associated with the formation of M2C carbides. For the Mo-W-Cr-Co-Ni steel, the double-austenitizing at the relatively low temperatures of 899 to 816 °C accelerated the aging kinetics because the ratio of Cr/(Mo + W) increased in the matrix due to the presence of undissolved carbides containing considerably larger concentrations of (Mo + W). The undissolved carbides reduced the impact toughness for aging temperatures up to 510 °C, prior to the large decrease in hardness that occurred on aging at higher temperatures.  相似文献   

11.
In 4Mo, 6W, 2Mo3W, 2Mo2Cr, and 3W2Cr alloy steels, which contain alloying elements, such as Mo, W and Cr, contributing to the secondary hardening by forming M2C-type carbide, the secondary hardening and fracture behavior were studied. Molybdenum had a strong effect on secondary hardening, while W had a very weak effect on it but delayed the overaging. The MoW steel exhibited both moderately strong hardening and considerable resistance to overaging. On the other hand, the secondary hardening effect was diminished by the Cr addition, because the cementite of M3C type was stabilized at higher temperatures and the formation of M2C carbides was thus inhibited. Although the Cr addition had no merit in the secondary hardening itself, it eliminated the secondary hardening embrittlement (SHE). This was observed as a severe intergranular embrittlement due to the impurity segregation for the Mo and MoW steels and as a decrease in upper shelf energy for W steel, even in the overaged condition.  相似文献   

12.
The microstructure and creep behavior of a 3 pct Co modified P911 steel and standard P911 steel were examined. It was shown that the nanoscale M23Ccarbides and MX carbonitrides in the 3 pct Co modified P911 steel are not susceptible to significant coarsening under creep conditions. Also, coarsening simulations of M23Cparticles were performed for both steels. The rates of lath and particle coarsening in the P911 + 3 pct Co steel are remarkably lower than those in the P911. Increased stability of a tempered martensite lath structure in the 3 pct Co modified P911 steel provides enhanced creep resistance at an exceptionally high temperature of 923 K (650 °C).  相似文献   

13.
This study is concerned with the effects of alloying elements on fracture toughness in the transition temperature region of base metals and heat-affected zones (HAZs) of Mn-Mo-Ni low-alloy steels. Three kinds of steels whose compositions were varied from the composition specification of SA 508 steel (grade 3) were fabricated by vacuum-induction melting and heat treatment, and their fracture toughness was examined using an ASTM E1921 standard test method. In the steels that have decreased C and increased Mo and Ni content, the number of fine M2C carbides was greatly increased and the number of coarse M3C carbides was decreased, thereby leading to the simultaneous improvement of tensile properties and fracture toughness. Brittle martensite-austenite (M-A) constituents were also formed in these steels during cooling, but did not deteriorate fracture toughness because they were decomposed to ferrite and fine carbides after tempering. Their simulated HAZs also had sufficient impact toughness after postweld heat treatment. These findings indicated that the reduction in C content to inhibit the formation of coarse cementite and to improve toughness and the increase in Mo and Ni to prevent the reduction in hardenability and to precipitate fine M2C carbides were useful ways to improve simultaneously the tensile and fracture properties of the HAZs as well as the base metals.  相似文献   

14.
The effect of the tempering heat treatment, including heating prior to the isothermal step, on carbide precipitation has been determined in a 2.25 Cr-1 Mo bainitic steel for thick-walled applications. The carbides were identified using their amount of metallic elements, morphology, nucleation sites, and diffraction patterns. The evolution of carbide phase fraction, morphology, and composition was investigated using transmission electron microscopy, X-ray diffraction, as well as thermodynamic calculations. Upon heating, retained austenite into the as-quenched material decomposes into ferrite and cementite. M7C3 carbides then nucleate at the interface between the cementite and the matrix, triggering the dissolution of cementite. M2C carbides precipitate separately within the bainitic laths during slow heating. M23C6 carbides precipitate at the interfaces (lath boundaries or prior austenite grain boundaries) and grow by attracting nearby chromium atoms, which results in the dissolution of M7C3 and, depending on the temperature, coarsening, or dissolution of M2C carbides, respectively.  相似文献   

15.
The fractures of three model alloys, imitating by their chemical composition the matrixes of the quenched high-speed steels of various Mo: W relations were analyzed. According to the measurements of the stress intensity factor KIc and the differences in the precipitation processes of carbides it was found out that the higher fracture toughness of the matrix of the molybdenum high-speed steels than on the tungsten ones is the results of the differences in the kinetics of precipitation from the martensite matrix of these steels during tempering. After tempering at 250 and 650°C the percentage of the intergranular fracture increases with the increase of the relation of Mo to W in the model alloys of the high-speed steel matrix. This is probably the result of higher precipitation rate of the M3C carbide (at 250°C) and the MC and M6C carbides (at 650°C) in the privileged regions along the grain boundaries. The change of the character of the model alloy fractures after tempering at 450°C from the completely transgranular one in the tungsten alloy to the nearly completely intergranular one in the molybdenum alloy indicates that the coherent precipitation processes responsible for the secondary hardness effect in the tungsten matrix begin at a lower temperature than in the molybdenum matrix. After tempering for the maximum secondary hardness the matrix fractures of the high-speed steels reveal a transgranular character regardless the relation of Mo to W. The higher fracture toughness of the Mo matrix can be the result of the start of the coherent precipitation processes at a higher temperature and their intensity which can, respectively, influence the size of these precipitations, their shape and the degree of dispersion. The transgranular character of the fractures of the S 6-5-2 type high-speed steel in the whole range tempering temperatures results from the presence of the undissolved carbides which while cracking in the region of stress concentration can constitute flaws of critical size which form the path of easy cracking through the grains. The transgranular cracking of the matrix of the real high-speed steels does not change the adventageous influence of molybdenum upon their fracture toughness. On the other hand, the carbides, undissolved during austenitizing, whose size distribution in the molybdenum steels from the point of view of cracking mechanics seems to be unsatisfactory, influence significantly the fracture toughness of these steels.  相似文献   

16.
Solidification of high-speed tool steels   总被引:4,自引:0,他引:4  
Gradient solidification and differential thermal analysis (DTA) experiments were used to study the process of solidification and the solidification microstructure of 11 alloys comprising the composition range of customary commercial high-speed steels (with the exception of cobalt-alloyed grades). Also included are a number of experimental high-speed steels alloyed with niobium. The results include the effects of alloy composition and cooling rate on the width of the solidification interval and on the sequence of the solidification reactions; the types of eutectics formed (austenite with M6C, M2C, or MC) and their volume fractions; the chemical compositions of the ledeburitic and primary carbides; and the relation between the chemistry of the carbides and that of the melt. Special attention is given to the formation and composition of heterogeneously nucleated primary MC particles and to the chemistry and stability of eutectic M2C, which is important as a precursor to MC and M6C in the microstructure of finished (hot-worked and heat-treated) material.  相似文献   

17.
This paper describes a research programme at the Austrian School of Mines (Montanuniversität) at Leoben, carried out since 1981 in cooperation with the Max-Planck-Institute for metals research in Stuttgart, on the fundamentals of alloy design for high speed tool steels. Among the results, the development of niobium-alloyed grades has an important place. Controlled solidification studies with a gradient technique have clarified the influence of various alloying elements on the as-cast microstructure of ledeburitic tool steels. A procedure for accurate quantitative metallography in SEM, combined with EDX and STEM-EDX analysis of the chemical compositions of the carbide and matrix phases, has led to a quantitative model for the performance of high speed steels in metal cutting tools, in which the contributions of carbides and of the matrix are combined using empirically determined weight factors. An important role is played by the saturation of the matrix with vanadium and other carbide formers which are essential for secondary hardening. This saturation is related to the way in which these carbide formers are present in the annealed structure; this in turn is influenced decisively by the solidification path (via M6C or M2C) of the alloy. On the basis of these concepts, low alloyed, niobium-containing economy grades have been developed whose performance is comparable to that of commercial high speed steels, and perspectives for the development of economic super high speed steels with niobium as an alloying element are indicated.  相似文献   

18.
Generally, Laves phase and M23C6 are regarded as undesirable phases in creep-resistant steels due to their very high-coarsening rates and the resulting depletion of beneficial alloying elements from the matrix. In this study, a computational alloy design approach is presented to develop martensitic steels strengthened by Laves phase and/or M23C6, for which the coarsening rates are tailored such that they are at least one order of magnitude lower than those in existing alloys. Their volume fractions are optimized by tuning the chemical composition in parallel. The composition domain covering 10 alloying elements at realistic levels is searched by a genetic algorithm to explore the full potential of simultaneous maximization of the volume fraction and minimization of the precipitates coarsening rate. The calculations show that Co and W can drastically reduce the coarsening rate of Laves and M23C6 and yield high-volume fractions of precipitates. Mo on the other hand was shown to have a minimal effect on coarsening. The strengthening effects of Laves phase and M23C6 in the newly designed alloys are compared to existing counterparts, showing substantially higher precipitation-strengthening contributions especially after a long service time. New alloys were designed in which both Laves phase and M23C6 precipitates act as strengthening precipitates. Successfully combining MX and M23C6 was found to be impossible.  相似文献   

19.
Carbide transformations of M3C → M7C3 → M23C6 → M6C and crystallographic relationships among these carbides were examined by transmission electron microscopy. Two kinds of high carbon-chromium steels containing tungsten or molybdenum were quenched rapidly from the melts and tempered at temperatures up to 700°C. By tempering at 600°C, M7C3 carbides nucleated mostly on cementite/ferrite interfaces and grew inward the cementite byin- situ transformation.In-situ transformations from M7C3 to M23C6 and from M23C6 to M6C were also found in these alloy steels during tempering at higher temperatures. Mutual relationships of crystal orientations among M3C, M7C3, M23C6 and M6C were decided as follows: {fx739-01}.  相似文献   

20.
Strength and toughness of Fe-10ni alloys containing C,Cr, Mo,and Co   总被引:8,自引:0,他引:8  
The effects of C (0.10 to 0.20 pct), Cr (0 to 3 pct), Mo (0 to 2 pct), and Co (0 to 8 pct) on the yield strength, toughness (Charpy shelf energy), and tempering behavior of martensitic lONiCr-Mo-Co steels have been investigated. Variations in the carbon content between 0.10 and 0.20 pct result in yield strengths between 160 and 210 ksi (1.1 and 1.45 GN/m2) when these steels are tempered at 900° to 1000°F (480° to 540°C) for times of 1 to 100 h. These steels exhibit a secondary-hardening peak at 900° to 1000° F (480° to 540°C) where coarse Fe3C carbides are gradually replaced by a fine, dislocation-nucleated dispersion of (Mo, Cr)2C carbides. Maximum toughness at a given yield strength in these steels is only obtained when they are tempered for sufficiently long times so that the coarse Fe3C carbides are completely dissolved. Molybdenum is primarily responsible for the secondary-hardening peak observed in these steels. However, chromium additions do result in lower secondaryhardening temperatures and promote coarsening of the secondary-hardening carbide. Best combinations of strength and toughness are obtained with steels containing 2 pct Cr and 1 pct Mo. Cobalt increases the yield strength of these steels over the entire tempering range and results in a higher secondary-hardening peak. This effect of cobalt is attributed to 1) a retardation in the rate of recovery of the dislocation substructure of the martensite, 2) the formation of a finer dispersion of secondary-hardening carbides, and 3) solid-solution strengthening. The finer dispersion of secondary-hardening carbides in steels containing cobalt is favored by the finer dislocation substructure in these steels since the (Mo, Cr)2C carbide is dislocation-nucleated. This fine dispersion of (Mo, Cr)2C carbide combined with the high nickel content accounts for the excellent combination of strength and toughness exhibited by these steels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号