首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis and single crystal structure are reported for a new gadolinium acid diphosphate tetrahydrate HGdP2O7·4H2O. This salt crystallizes in the monoclinic system, space group P21/n, with the following unit-cell parameters: a = 6.6137(2) Å, b = 11.4954(4) Å, c = 11.377(4) Å, β = 87.53(2)° and Z = 4. Its crystal structure was refined to R = 0.0333 using 1783 reflections. The corresponding atomic arrangement can be described as an alternation of corrugated layers of monohydrogendiphosphate groups and GdO8 polyhedra parallel to the () plane. The cohesion between the different diphosphoric groups is provided by strong hydrogen bonding involving the W4 water molecule.

IR and Raman spectra of HGdP2O7·4H2O confirm the existence of the characteristic bands of diphosphate group in 980–700 cm−1 area. The IR spectrum reveals also the characteristic bands of water molecules vibration (3600–3230 cm−1) and acidic hydrogen ones (2340 cm−1). TG and DTA investigations show that the dehydration of this salt occurs between 79 and 900 °C. It decomposes after dehydration into an amorphous phase. Gadolinium diphosphate Gd4(P2O7)3 was obtained by heating HGdP2O7·4H2O in a static air furnace at 850 °C for 48 h.  相似文献   


2.
Catalytic chemical vapor deposition (Cat-CVD) has been developed to deposit alumina (Al2O3) thin films on silicon (Si) crystals using N2 bubbled tri-methyl aluminum [Al(CH3)3, TMA] and molecular oxygen (O2) as source species and tungsten wires as a catalyzer. The catalyzer dissociated TMA at approximately 600 °C. The maximum deposition rate was 18 nm min−1 at a catalyzer temperature of 1000 °C and substrate temperature of 800 °C. Metal oxide semiconductor (MOS) diodes were fabricated using gates composed of 32.5-nm-thick alumina film deposited at a substrate temperature of 400 °C. The capacitance measurements resulted in a relative dielectric constant of 7.4, fixed charge density of 1.74×1012 cm−2, small hysteresis voltage of 0.12 V, and very few interface trapping charges. The leakage current was 5.01×10−7 A cm−2 at a gate bias of 1 V.  相似文献   

3.
An all alkoxide based sol–gel route was investigated for preparation of epitaxial La0.5Sr0.5CoO3 (LSCO) films on 100 SrTiO3 (STO) substrates. Films with 20–30 to 80–100 nm thickness were prepared by spin-coating 0.2–0.6 M (metal) solutions on the STO substrates and heat treatment to 800 °C at 2 °C min− 1, 30 min, in air. The films were epitaxial with a cube-on-cube alignment and the LSCO cell was strained to match the STO substrate of 3.905 Å closely; a and b = 3.894 Å and 3.897 Å for the 20–30 and 80–100 nm films, respectively. The c-axis was compressed to 3.789 Å and 3.782 Å for the 20–30 and 80–100 nm films, respectively, which resulted in an almost unchanged cell volume as compared to polycrystalline film and nano-phase powders prepared in the same way. The SEM study showed mainly very smooth, featureless surfaces, but also some defects. A film prepared in the same way on an -Al2O3 substrate was dense and polycrystalline with crystallite sizes in the range 10–50 nm and gave cubic cell dimensions of ac = 3.825 Å. The conductivity of the ca 30–40 nm thick polycrystalline film was 1.7 mΩcm, while the epitaxial 80–100 nm film had a conductivity of around 1.9 mΩcm.  相似文献   

4.
We report on the properties of (1−x)SrBi2Ta2O9xBi3TaTiO9 solid solution thin films for ferroelectric non-volatile memory applications. The solid solution thin films fabricated by modified metalorganic solution deposition technique showed much improved properties compared to SrBi2Ta2O9. A pyrochlore free crystalline phase was obtained at a low annealing temperature of 600°C and grain size was found to be considerably increased for the solid solution compositions. The film properties were found to be strongly dependent on the composition and annealing temperatures. The measured dielectric constant of the solid solution thin films was in the range 180–225 for films with 10–50% of Bi3TaTiO9 content in the solid solution. Ferroelectric properties of (1−x)SrBi2Ta2O9xBi3TaTiO9 thin films were significantly improved compared to SrBi2Ta2O9. For example, the observed remanent polarization (2Pr) and coercive field (Ec) values for films with 0.7SrBi2Ta2O9–0.3Bi3TaTiO9 composition, annealed at 650°C, were 12.4 μC/cm2 and 80 kV/cm, respectively. The solid solution thin films showed less than 5% decay of the polarization charge after 1010 switching cycles and good memory retention characteristics after about 106 s of memory retention. The improved microstructural and ferroelectric properties of (1−x)SrBi2Ta2O9xBi3TaTiO9 thin films compared to SrBi2Ta2O9, especially at lower annealing temperatures, suggest their suitability for high density FRAM applications.  相似文献   

5.
This paper reports the preparation process and the long lasting phosphorescence of the Sr4Al14O25:Eu2+,Dy3+ thin films obtained by magnetron sputtering. Phosphorescence was achieved by annealing the films in reducing atmosphere. Sr4Al14O25 thin film was obtained when the films were treated at 1200 °C, while SrAl2O4 was generated as the intermediate phase during the annealing process. Sr4Al14O25:Eu2+,Dy3+ film generated an emission at 485 nm, and SrAl2O4:Eu2+,Dy3+ film showed an emission peaking at 515 nm. Afterglow characteristics were observed for both films, and Sr4Al14O25:Eu2+,Dy3+ film showed a better afterglow property than the SrAl2O4:Eu2+,Dy3+ film due to a deeper trap level and a higher trap concentration formed in the thin films.  相似文献   

6.
Using a Zn3In2O6 target, indium-zinc oxide films were prepared by pulsed laser deposition. The influence of the substrate deposition temperature and the oxygen pressure on the structure, optical and electrical properties were studied. Crystalline films are obtained for substrate temperatures above 200°C. At the optimum substrate deposition temperature of 500°C and the optimum oxygen pressure of 10−3 mbar, both conditions that indeed lead to the highest conductivity, Zn3In2O6 films exhibit a transparency of 85% in the visible region and a conductivity of 1000 S/cm. Depositions carried out in oxygen and reducing gas, 93% Ar/7% H2, result in large discrepancies between the target stoichiometry and the film composition. The Zn/In (at.%) ratio of 1.5 is only preserved for oxygen pressures of 10−2–10−3 mbar and a 93% Ar/7% H2 pressure of 10−2 mbar. The optical properties are basically not affected by the type of atmosphere used during the film deposition, unlike the conductivity which significantly increases from 80 to 1400 S/cm for a film deposited in 10−2 mbar of O2 and in 93% Ar/7% H2, respectively.  相似文献   

7.
The interdiffusion and intermetallic compound formation of Au/Nb bilayer thin films annealed at 200–400 °C have been investigated. The bilayer thin films were prepared by electron beam deposition. The Nb film was 50 nm thick and the Au film was 50–200 nm thick. The interdiffusion of annealed specimens was examined by measuring the electrical resistance and depth-composition profile and by transmission electron microscopy. Interdiffusion between the thin films was detected at temperatures above 325 °C in a vacuum of 10-4 Pa. The intermetallic compound Au2Nb3 and other unknown phases form during annealing at over 400 °C. The apparent diffusion constants, determined from the penetration depth for annealing at 350 °C, are 3.5 × 10−15 m2 s−1 for Nb in Au and 8.6 × 1107minus;15 m2 s−1 for Au in Nb. The Au surface of the bilayer films becomes uneven after annealing at over 400 °C due to the reaction.  相似文献   

8.
Thin films of the system xAl2O3–(100 − x)Ta2O5–1Er2O3 were prepared by a sol–gel method and a dip-coating technique. The influences of the composition and the crystallization of the films on Er3+ optical properties were investigated. Results of X-ray diffraction indicated that the crystallization temperature of Ta2O5 increased from 800 to 1000 °C with increased values of x. In crystallized films, the intensities of the visible fluorescence and upconversion fluorescence tend to decrease with an increase in x values, due to the high phonon energy of Al2O3; the strongest fluorescence is observed in a crystallized film for x = 4 heat treated at 1000 °C. In amorphous films obtained by heat treatment at relatively low temperatures the Er3+ fluorescence could not be observed because strong fluorescence from organic residues remaining in the films thoroughly covered the Er3+ fluorescence. On the other hand, the Er3+ upconversion fluorescence in the amorphous films was observed to be stronger than that in the crystallized films. The strongest upconversion fluorescence is observed in an amorphous film for x = 75 heat treated at 800 °C.  相似文献   

9.
Pt-PtOx thin films were prepared on Si(100) substrates at temperatures from 30 to 700°C by reactive r.f. magnetron sputtering with platinum target. Deposition atmosphere was varied with O2/Ar flow ratio. The deposited films were characterized by X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. Resistively of the deposited films was measured by d.c. four probe method. The films mainly consisted of amorphous PtO and Pt3O4 (or Pt2O3) below 400°C, and amorphous Pt was increased in the film as a deposition temperature increased to 600°C. When deposition temperature was thoroughly increased, (111) oriented pure Pt films were formed at 700°C. Compounds included in the films strongly depended on substrate temperature rather than O2/Ar flow ratio. Electrical resistivity of Pt-PtOx films was measured to be from the order of 10−1 Ω cm to 10−5 Ω cm, which was related to the amount of Pt phase included in the deposited films.  相似文献   

10.
-Fe2O3 thin films were prepared by metalorganic deposition (MOD) using Fe(III) 2-ethylhexanoate as the metalorganic precursor. A series of experiments were conducted on the metalorganic spin-coated films and their correspondingly annealed samples by employing experimental techniques ranging from thermal gravimetric analysis, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) to optical property characterization. In this way a better understanding has been achieved regarding the decomposition process of the metalorganic precursor, the solid state -Fe2O3 film formation and crystallization process, and the relationship between the structure and the optical properties of the prepared films. The conclusions of our experiments are the following. The decomposition of Fe(III) 2-ethylhexanoate is a multistep process that is characterized by distinct transition temperatures and thermogravimetric loss rates. Amorphous -Fe2O3 film is formed at an annealing temperature of around 460°C, further annealing at higher temperatures induces the amorphous-to-crystalline phase transition and grain growth. FTIR, XRD and SEM data for structural characterization are correlated and in good agreement. A new FTIR absorption band, peaking at 1085 cm-1, is assigned to the vibration of crystalline Fe-O mode, therefore this peak is useful in monitoring the amorphous-to-crystalline phase transition of -Fe2O3 material. Instead of columnar structure in physical vapour deposition-prepared films a granular structure is typical of MOD prepared films, the grain size is much larger near the surface of the film than near the substrate. Optical characterization shows that the refractive index and extinction coefficient of the -Fe2O3 thin films increase with the increase of annealing temperatures. The potential interesting applications of the MOD-prepared -Fe2O3 thin films include gas sensor materials, photoelectrodes and storage media.  相似文献   

11.
Results from the studies of multicomponent CuO:V2O5 bulk material and thermally evaporated thin films of highly conducting bulk composition prepared at different substrate temperatures are thus compared and discussed. The electronic conductivity is enhanced on increase in the substrate temperature Ts and reaches a maximum value of 12.3 × 10−6Ω−1 cm−1 for Ts = 423 K. X-ray photoelectron spectroscopy studies indicate an increase in the reduced states of vanadium and copper ions in going from the bulk glass to the thin film. Dynamic secondary-ion mass spectroscopy studies on thin films over a depth of 3000 Å show a strong dependence of Ts on the Cu-to-V intensity ratio. Even though stoichiometric values for thin films are achievable by varying the Ts, the oxidation states of Cu in these films are predominantly monovalent. The electrical behaviors of these materials and their thin film counterparts are finally being discussed in relation to the surface analysis data.  相似文献   

12.
Hf(OCH2CH2NMe2)4, [Hf(dmae)4] (dmae=dimethylaminoethoxide) was synthesized and used as a chemical vapor deposition precursor for depositing Hf oxide (HfO2). Hf(dmae)4 is a liquid at room temperature and has a moderate vapor pressure (4.5 Torr at 80 °C). It was found that HfO2 film could be deposited as low as 150 °C with carbon level not detected by X-ray photoelectron spectroscopy. As deposited film was amorphous but when the deposition temperature was raised to 400 °C, X-ray diffraction pattern showed that the film was polycrystalline with weak peak of monoclinic (020). Scanning electron microscope analysis indicated that the grain size was not significantly changed with the increase of the annealing temperature. Capacitance–voltage measurement showed that with the increase of annealing temperature, the effective dielectric constant was increased, but above 900 °C, the effective dielectric constant was decreased due to the formation of interface oxide. For 500 Å thin film, the dielectric constant of HfO2 film annealed at 800 °C was 20.1 and the current–voltage measurements showed that the leakage current density of the HfO2 thin film annealed at 800 °C was 2.2×10−6 A/cm2 at 5 V.  相似文献   

13.
Mn2+-doped Zn2SiO4 and Mg2Gd8(SiO4)6O2 phosphor films were deposited on silicon and quartz glass substrates by sol–gel process (dip-coating). The variations of sol viscosity with time and film thickness with the number of layers were investigated in Zn2SiO4: Mn system. The results of XRD and IR showed that the Zn2SiO4: Mn films remained amorphous below 700°C and crystallized completely around 1000°C. From AFM studies, it was observed that the grains with 0.5–0.8 μm size packed closely in Zn2SiO4: Mn films, which were uniform and crack free. The luminescence properties of Zn2SiO4: Mn films were characterized by absorption, excitation and emission spectra as well as luminescence decay. These properties were discussed in detail by a comparison with those of Mn2+ (and Pb2+)-doped Mg2Gd8(SiO4)6O2 phosphor films.  相似文献   

14.
Highly conducting and transparent indium tin oxide (ITO) thin films were prepared on SiO2 glass and silicon substrates by pulsed laser ablation (PLA) from a 90 wt.% In2O3-10 wt.% SnO2 sintered ceramic target. The growths of ITO films under different oxygen pressures (PO2) ranging from 1×10−4–5×10−2 Torr at low substrate temperatures (Ts) between room temperature (RT) and 200°C were investigated. The opto-electrical properties of the films were found to be strongly dependent on the PO2 during the film deposition. Under a PO2 of 1×10−2 Torr, ITO films with low resistivity of 5.35×10−4 and 1.75×10−4 Ω cm were obtained at RT (25°C) and 200°C, respectively. The films exhibited high carrier density and reasonably high Hall mobility at the optimal PO2 region of 1×10−2 to 1.5×10−2 Torr. Optical transmittance in excess of 87% in the visible region of the solar spectrum was displayed by the films deposited at Po2≥1×10−2 Torr and it was significantly reduced as the PO2 decreases.  相似文献   

15.
High-quality LB multilayers have been prepared from the Lu(III) sandwich complex of 2,3,9,10,16,17,23,24-octa (n-butoxy)phthalocyanine (LuPc2(OBu)16). Surface pressure-area isotherms were characterized and indicate that a stable monolayer is formed corresponding to an area per molecule of 2.4 nm2 at 30 mN m−1. The LB films were highly birefringent, and polarized spectra gave dichroic ratios of 3.3 for the 670 nm absorption band and between 0.5 and 2.8 for infrared absorptions. The results indicate that the phthalocyanine rings were highly oriented perpendicular to the dipping direction but somewhat tilted from the substrate normal. The order was shown to be absent when (i) unsubstituted LuPc2 was used for LB films, or (ii) the horizontal lifting method of film deposition was used, or (iii) the surface pressure was increased to 50 mN m−1, causing a molecular rearrangement. The ordering was improved at 100 °C and finally lost at 280 °C by annealing on a hot stage. The d.c. electrical conductivity of LB films of LuPc2(OBu)16 was low (σ ≈ 2 × 10−7 Ω−1 m−1), in contrast with unsubstituted LuPc2 (σ ≈ 10−1 Ω−1 m−1) and showed no evidence for anisotropy. The findings are in broad agreement with related studies and illustrate some of the many factors involved in improving the structure of phthalocyanine LB films for possible applications.  相似文献   

16.
17.
Thin films of polycrystalline β-FeSi2 were grown on (100) Si substrates of high resistivity by electron beam evaporation of Si/Fe ultrathin multilayers and subsequent annealing by conventional vacuum furnace (CVF) and rapid thermal annealing (RTA) for 1 h and 30 s, respectively, in the temperature range from 600 to 900°C. X-ray diffraction, Raman spectroscopy, spectroscopic ellipsometry, resistivity and Hall measurements were employed for characterization of the silicide layers quality in terms of the annealing conditions. For the silicide layers prepared by CVF annealing, although the grain size increase with increasing the annealing temperature, the optimum temperature to obtain the higher material quality (carrier mobility of the order of 100 cm2 Vs−1 and carrier concentration of about 1 × 1017 cm−3) is about 700°C. At higher annealing temperatures, the quality of the material is degraded due to the presence of the oxide Fe2O3. In the case of the silicides prepared by RTA, the quality of the material is improved progressively with increasing the annealing temperature up to 900°C.  相似文献   

18.
In2O3 thin films have been prepared from commercially available pure In2O3 powders by high vacuum thermal evaporation (HVTE) and from indium iso-propoxide solutions by sol-gel techniques (SG). The films have been deposited on sapphire substrates provided with platinum interdigital sputtered electrodes. The as-deposited HVTE and SG films have been annealed at 500°C for 24 and 1 h, respectively. The film morphology, crystalline phase and chemical composition have been characterised by SEM, glancing angle XRD and XPS techniques. After annealing at 500°C the films’ microstructure turns from amorphous to crystalline with the development of highly crystalline cubic In2O3−x (JCPDS card 6-0416). XPS characterisation has revealed the formation of stoichiometric In2O3 (HVTE) and nearly stoichiometric In2O3−x (SG) after annealing. SEM characterisation has highlighted substantial morphological differences between the SG (highly porous microstructure) and HVTE (denser) films. All the films show the highest sensitivity to NO2 gas (0.7–7 ppm concentration range), at 250°C working temperature. At this temperature and 0.7 ppm NO2 the calculated sensitivities (S=Rg/Ra) yield S=10 and S=7 for SG and HVTE, respectively. No cross sensitivity have been found by exposing the In2O3 films to CO and CH4. Negligible H2O cross has resulted in the 40–80% relative humidity range, as well as to 1 ppm Cl2 and 10 ppm NO. Only 1000 ppm C2H5OH has resulted to have a significant cross to the NO2 response.  相似文献   

19.
The preparation of very thin indium tin oxide (ITO) films with extremely high transparency and suitable resistivity, as well as resistivity stability for long term use, is described. In order to obtain these properties, amorphous suboxide films were first prepared and then annealed. Suboxide films with a thickness of 20 to 30 nm were prepared on PET film and glass substrates at a temperature of 60 °C using In2O3---SnO2 targets with a SnO2 content of 0 to 10 wt% by DC magnetron sputtering in a pure argon gas atmosphere. The films were annealed at a temperature of 150 °C for 1 to 100 h in air. The resistivity of films on PET films was, depending on the SnO2 content, on the order of 10−3 ω cm. An average transmittance above 97% in the visible wavelength range and a resistivity of about 4 × 10−3 ω cm, as well as resistivity stability, were attained in ITO films with a SnO2 content of about 1 wt% prepared on PET films by the low-temperature process. It is thought that these properties result from crystallization which occurred during the annealing, duration up to about 25 h.  相似文献   

20.
Chromium disilicide (CrSi2) films 1 000 Å thick have been prepared by molecular beam epitaxy on CrSi2 templates grown on Si(111) substrate. The effect of the substrate temperature on the structural, electrical and optical properties of CrSi2 films has been studied by transmission and scanning electron microscopies, optical microscopy, electrical resistivity and Hall effect measurements and infrared optical spectrometry. The optimal temperature for the formation of the epitaxial A-type CrSi2 film have been found to be about 750°C. The electrical measurement have shown that the epitaxial A-type CrSi2 film is p-type semiconductor having a hole concentration of 1 × 1017cm−3 and Hall mobility of 2 980 cm2 V−1 s−1 at room temperature. Optical absorption coefficient data have indicated a minimum, direct energy gap of 0.34 eV. The temperature dependence of the Hall mobility (μ) in the temperature range of T = 180–500 K can be expressed as μ = 7.8 × 1010T−3cm2V−1s−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号