首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— The broad bands at around 155 nm for GdAl3(BO3)4:Eu, at 184 nm for Ca4GdO(BO3)3:Eu, at 183 nm for Gd2SiO5:Eu, and at 170 nm for GdAlO3:Eu were observed. These bands were assigned to the charge‐transfer (CT) transition of Gd3+‐O2?. In the excitation spectrum of (Gd,Y)BO3:Eu, a broadened excitation band was observed in VUV region. It could be considered that this band was composed of two bands at about 160 and 166 nm. The preceding band was assigned to the BO3 group absorption. The later one at about 166 nm could be assigned to the CT transition of Gd3+‐O2?, according to the result of GdAl3(BO3)4:Eu, Ca4GdO(BO3)3:Eu, Gd2SiO5:Eu, and GdAlO3:Eu. The excitation spectra overlapped between the CT transition of Gd3+‐O2? and BO3 groups absorption. It caused the emission of Eu3+ to take place effectively in the trivalent europium‐doped (Gd,Y)BO3 host lattice under 147‐nm excitation.  相似文献   

2.
Abstract— The photoluminescence (PL) and vacuum‐ultraviolet excitation (VUV) properties of BaZr(BO3)2 doped with the Eu3+ activator ion were studied as a new red phosphor for PDP applications. The excitation spectrum shows strong absorption in the VUV region with an absorption band edge at 200 nm. The charge‐transfer excitation band of Eu3+ was enhanced by co‐doping with an Al3+ ion into the BaZr(BO3)2 lattices. The PL spectrum shows the strongest emission at 615 nm, corresponding to the electric dipole 5D07F2 transition of Eu3+ in BaZr(BO3)2, which results in good red‐color purity.  相似文献   

3.
The dependency of the chromaticity shifts on the concentration of Eu2+ doped in BaMgAl10O17 (BAM) was investigated under heat‐treatment and vacuum ultraviolet (VUV) irradiation. The Eu2+ ions in BAM show an asymmetrical broad emission band with a maximum at ~452 nm under excitation of VUV light at room temperature, showing that multiple crystalline cationic sites exist in the host. It was found that the chromaticity shifts greatly decrease with increasing heat‐treatment temperature. Regardless of the Eu2+ concentration, the chromaticity shifts caused by heat‐treatment are greater than that caused by VUV irradiation. Compared with conventional BAM, a solid solution of BAM with barium aluminate as a powder and film was also studied, and very few chromacity shifts were observed. It is suggested that the distribution of Eu2+ ions in different sites in a BAM lattice results in different chromaticity coordinates. By increasing the Eu2+ concentration in BAM, or under heat‐treatment and VUV irradiation, the emission band shifts towards longer wavelengths.  相似文献   

4.
The Al2O3–BaO binary system has been studied using the CALPHAD technique in this paper. The modeling of Al2O3 in the liquid phase is modified from the traditional formula with the liquid phase represented by the ionic two-sublattice model as (Al3+, Ba2+)P (AlO21−, O2−)Q. Based on the measured phase equilibrium data and experimental thermodynamic properties, a set of thermodynamic functions has been optimized using an interactive computer-assisted analysis. A comparison between the calculated results and experimental data is presented.  相似文献   

5.
The nested arc-annotation of a sequence is an important model used to represent structural information for RNA and protein sequences. Given two sequences S1 and S2 and a nested arc-annotation P1 for S1, this paper considers the problem of inferring the nested arc-annotation P2 for S2 such that (S1, P1) and (S2, P2) have the largest common substructure. The problem has a direct application in predicting the secondary structure of an RNA sequence given a closely related sequence with known secondary structure. The currently most efficient algorithm for this problem requires O(nm3) time and O(nm2) space where n is the length of the sequence with known arc-annotation and m is the length of the sequence whose arc-annotation is to be inferred. By using sparsification on a new recursive dynamic programming algorithm and applying a Hirschberg-like traceback technique with compression, we obtain an improved algorithm that runs in min{O(nm2 + n2m),O(nm2 log n), O(nm3)} time and min{O(m2 + mn), O(m2 log n + n)} space.  相似文献   

6.
Ce3+–Mn2+–Tb3+ cooperative barium–yttrium-orthosilicate phosphors composed of Ba9-3m/2-n-3p/2CemMnnTbpY2Si6O24 (m = 0.005–0.4, n = 0–0.5, p = 0–0.5) were prepared using a solid-state reaction. The X-ray diffraction patterns of the resultant phosphors were examined to index the peak positions. The photoluminescence (PL) excitation and emission spectra of the Ce3+–Mn2+–Tb3+ activated phosphors were clearly monitored. The dependence of the luminescent intensity of the Mn2+–Tb3+ co-doped Ba9-3m/2CemY2Si6O24 host lattices on Ce3+ content (m = 0.025, 0.1) was also investigated. Co-doping Mn2+ into the Ce3+–Tb3+ co-doped host structure enabled energy transfer from Ce3+ to Mn2+; this energy transfer mechanism is discussed. The phosphors of Ce3+–Mn2+–Tb3+ doped Ba9Y2Si6O24 host lattice were prepared for efficient white-light emission under NUV excitation. With these phosphors, the desired CIE values including white region of the emission spectra were achieved.  相似文献   

7.
The sublimation of terbium and lutetium triiodides was studied by Knudsen effusion mass spectrometry. The temperature dependencies of partial vapor pressures [atm] of the monomer and dimer molecules were determined as: lnp(TbI3) = – (31.74 ± 0.24)× 103/T + (21.43 ± 0.29) for 743–906 K; lnp(Tb2I6) = – (38.66 ± 0.38)× 103/T + (25.63 ± 0.46) for 786–906 K; lnp(LuI3) = – (31.48 ± 0.25)× 103/T + (22.28 ± 0.30) for 721–951 K; and lnp(Lu2I6) = – (36.95 ± 0.37)× 103/T + (25.21 ± 0.43) for 796–950 K. On the basis of a joint analysis of all literature data, the sublimation enthalpies [kJ mol–1] at 298.15 K are recommended as 281 ± 3 (TbI3), 346 ± 30 (Tb2I6), 279 ± 12 (LuI3), and 340 ± 30 (Lu2I6). The standard formation enthalpies [kJ mol–1] of the gaseous species at 298.15 K are –343 ± 4 (TbI3), –902 ± 30 (Tb2I6),–326 ± 12 (LuI3), and –870 ± 30 (Lu2I6).  相似文献   

8.
《国际计算机数学杂志》2012,89(9):1147-1159

In this article, we report on three-level implicit stable finite difference formulas of O(k 2 + h 2) and O(k 2 + h 4) for the numerical integration of certain mildly quasi-liner fourth order parabolic partial differential equations in one-space dimension. The numerical solution of u xx is obtained as a by-product of the method. In all cases, we use only (3 + 3 + 3)-grid points and a single computational cell. Difference schemes for the fourth order linear parabolic equation in polar coordinates are also discussed. The stability analysis for the model linear problem is given as a representative example. Numerical results are presented to demonstrate the order and accuracy of the proposed methods.  相似文献   

9.
Nanoplates of α-SnWO4 and SnW3O9 were selectively synthesized in large scale via a facile hydrothermal reaction method. The final products obtained were dependent on the reaction pH and the molar ratio of W6+ to Sn2+ in the precursors. The as-prepared nanoplates of α-SnWO4 and SnW3O9 were characterized by X-ray powder diffraction (XRD), N2-sorption BET surface area, transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). The XPS results showed that Sn exists in divalent form (Sn2+) in SnW3O9 as well as in α-SnWO4. The gas-sensing performances of the as-prepared α-SnWO4 and SnW3O9 toward H2S and H2 were investigated. The hydrothermal prepared α-SnWO4 showed higher response toward H2 than that prepared via a solid-state reaction due to the high specific surface area. The gas-sensing property toward H2S as well as H2 over SnW3O9 was for the first time reported. As compared to α-SnWO4, SnW3O9 exhibits higher response toward H2S and its higher response can be well explained by the existence of the multivalent W (W6+/W4+) in SnW3O9.  相似文献   

10.
Given a -complete (semi)lattice , we consider -labeled transition systems as coalgebras of a functor (−), associating with a set X the set X of all -fuzzy subsets. We describe simulations and bisimulations of -coalgebras to show that L(−) weakly preserves nonempty kernel pairs iff it weakly preserves nonempty pullbacks iff L is join infinitely distributive (JID).Exchanging for a commutative monoid , we consider the functor (−)ω which associates with a set X all finite multisets containing elements of X with multiplicities m M. The corresponding functor weakly preserves nonempty pullbacks along injectives iff 0 is the only invertible element of , and it preserves nonempty kernel pairs iff is refinable, in the sense that two sum representations of the same value, r1 + … + rm = c1 + … + cn, have a common refinement matrix (m(i, j)) whose k-th row sums to rk and whose l-th column sums to cl for any 1≤ km and 1 ≤ ln.  相似文献   

11.
A series of Eu3+-activated Li2Mg2(WO4)3 (LMW) materials were synthesized by high temperature solid state reactions. The phosphor can be effectively excited by 394 nm near ultraviolet light and emit intense red light with high color purity. Prepared phosphors can be indexed to LMW with particular lyonsite structure. The occupation of Eu3+ in LMW is selective. Most of Eu3+ comes into 1A sites without inversion symmetry. The present research suggests that LMW is a suitable host for luminescence applications and Eu3+-activated LMW is a promising phosphor for phosphor-converted white light-emitting diodes.  相似文献   

12.
Thermodynamic assessment of the CaO–Cu2O–FeO–Fe2O3 system is presented. Effects of temperature and P(O2) on the phase equilibria involving slag, solubility of copper and the Fe3+/Fe2+ ratio in slag have been modeled using available experimental data. Subsolidus phase equilibria and concentration of iron in liquid copper were evaluated as well. Different ways of representing phase equilibria in a quaternary system are illustrated. The slag model, [Ca2+, Cu+, Fe2+, Fe3+][O2−], was developed using the Modified Quasichemical Model (MQM). Liquid metal phase is modeled using the MQM, but as a separate solution, (CuI, FeII, OII). Spinel phase is modeled using the Compound Energy Formalism (CEF) and takes into account the solubility of copper and calcium. A thermodynamic database produced in the present study can be used for predictions in pyrometallurgical processing of copper involving calcium ferrite slags. The database is internally consistent with the binary and ternary sub-systems published earlier, as well as with higher-order systems. It works in the environment of FactSage, ChemApp, ChemSheet and SimuSage software packages.  相似文献   

13.
Phosphate glasses with chemical compositions of 74.5NaH2PO4–20ZnO–5Li2O–0.5Sm2O3 and 74NaH2PO4–20ZnO–5Li2O–0.5Sm2O3–0.5Eu2O3 were synthetized by melt quenching method. We investigated the influence of Sm3+/Eu3+ doping on the optical properties of phosphate glasses. X-ray Diffraction indicates that the samples have an amorphous structure. DSC measurements show a good thermal stability of phosphate glasses. Using the absorption spectra, Judd–Ofelt analysis was applied to absorption bands of Sm3+ (4f5) to carry out the three phenomenological parameters of Judd–Ofelt (JO). According to the obtained values of Ω2, Ω4 and Ω6, some radiative properties were theoretically determined. We report both the photoluminescence (PL) and the PL lifetime measurements of a prominent emission transition 4G5/2  6H5/2 (604 nm) of Sm3+ both in absence and in presence of Eu3+. It is shown that Eu3+ ions act as sensitizers for Sm3+ ions and contribute largely to the improvement of the radiative properties of phosphate glasses. An improvement of the PL lifetime value after adding Eu3+ ions (4.58 ms) is reported. The predicted lifetime (τrad) calculated by Judd–Ofelt theory and the experimental lifetime (τmeas) for the prepared phosphate glasses were compared with those of other works. Photoluminescence (PL) intensity of 4G5/2  6H5/2 (604 nm), 4G5/2  6H7/2 (567 nm), 4G5/2  6H9/2 (650 nm) and 4G5/2  6H11/2 (706 nm) and the quantum efficiency (η) for the excited 4G5/2 level were enhanced after adding Eu3+. The radiative properties obtained for (Sm, Eu) codoped phosphate glasses suggest that the present material can be a potential candidate for the development of color display devices.  相似文献   

14.
The microstructure of M-doped SnO2 (M = Cr3+, Cu2+ and Pd2+) prepared by the sol–gel method and their gas-sensing performance were investigated. In particular, we focus on the effects of metallic ions on the hydrogen sensing behavior of the SnO2-based sensor. It is found that hydrogen gas response of SnO2 can be enhanced evidently by adding Pd2+, while such effect from Cr3+ and Cu2+ exhibits somewhat slight. A theoretical study based on first principles calculation shows that SnO2–Pd (1 1 0) surface enable adsorb more H2 gas and receive larger electrons from adsorbed H2 molecule, thereby holding the potential for the improvement of gas response to hydrogen.  相似文献   

15.
The synthesis of quantum dot coated with cetyltrimethyl ammonium bromide (CTAB) and gemini surfactant [C12H25N+(CH3)2(CH2)4(CH3)2N+C12H25]·2Br (C12-4-12) in aqueous solution have been described. It is characterized by photoluminescent spectroscopy, UV–vis spectroscopy and transmission electron microscopy (TEM), etc. In comparison with CTAB-coated QDs, the QDs coated with C12-4-12 respond selectively to both transition metal ion copper and fluoride ion in aqueous media. When Cu2+ is bound to C12-4-12-coated QD micelles, the fluorescence intensity is quenched. Linear relationships are found between the relative fluorescence intensity and the concentration of Cu2+ in the range 0–500 μM, which is best described by a Stern–Volmer-type equation. Meanwhile, it is found that F enhanced the luminescence of the C12-4-12-coated QD micelles in a concentration dependence that is described by a Langmuir binding isotherm equation in the range 0–300 μM. The limits of detection of Cu2+ and F are 1.1 and 0.68 μM, respectively. The possible mechanism is discussed.  相似文献   

16.
A series of the Zn3(BO3)2:Eu3+ without or with alkali metal ions doping at a low sintering temperature were synthesized by the solid-state reaction method. The XRD pattern shows that all samples exhibit Zn3(BO3)2 crystalline phase. The samples co-doped with alkali metal ions have better crystallinity compared with the un-compensated ones. The different charge compensation approaches have no influence on the shape and position of the emission and excitation spectra. However, the luminescent intensity of samples has been obviously enhanced with different alkali metal ions co-doping. The introduction of Li+ can increase the red emission of Eu3+ compared with the others. Thus, the volume compensation and the equilibrium of mole number can be taken into consideration by charge compensated (CC) approaches.  相似文献   

17.
《Displays》2014,35(5):273-278
Three kinds of lanthanide phosphors (LaxLu1xF3: Eu3+, LaF3–CaF2:Eu3+ and LaF3: Eu3+) have been successfully synthesized based on three different ways such as molten salts, co-precipitation, supersonic and microwave irradiations. The as-prepared powder materials all exhibited red luminescence. Their crystal structures or morphologies were studied by means of X-ray powder diffraction and scanning electronic microscope. Eu3+-doped LaF3–CaF2 phosphor can be emissive under excitation at longer wavelengths (466 and 533 nm) excitations. Supersonic and microwave irradiations have shortened the reaction time of LaF3: Eu3+ crystals in 40 min under very low temperature (50 °C).  相似文献   

18.
Zr4+- and Eu3+-codoped SrMg2(PO4)2 phosphors were prepared by conventional solid-state reaction. Under the excitation of ultraviolet light, the emission spectra of Sr0.95Eu0.05Mg2−2xZr2xP2O8 (x = 0.0005-0.07) are composed of a broad emission band peaking at 500 nm from Zr4+-emission and the characteristic emission lines from the 5D0 → 7FJ (J = 0, 1, 2, 3 and 4) transitions of Eu3+ ions. These phosphors show the long-lasting phosphorescence. The emission color varies from red to white with increasing Zr4+-content. The white-light emission is realized in single-phase phosphor of Sr0.95Eu0.05Mg2−2xZr2xP2O8 (x = 0.07) by combining the Zr4+- and Eu3+-emission. The duration of the persistent luminescence of Sr0.95Eu0.05Mg2−2xZr2xP2O8 (x = 0.07) reaches nearly 1.5 h. The time at which the long-lasting phosphorescence intensity is 50% of its original value (T0.5) is 410 s. The afterglow decay curves and the thermoluminescence spectra were measured to discuss this long-lasting phosphorescence phenomenon. The co-doped Zr4+ ions act as both the luminescence centers and trap-creating ions.  相似文献   

19.
《Calphad》2001,25(1):97-108
Among the several methods that have been used to predict thermodynamic properties of ternary alloys and oxides from three binary data, we used the models proposed by Kohler(1), Toop(2), and Muggianu (3) in order to evaluate the possibility of the application of these methods to geologically important systems, such as zeolites, clay minerals and silicate glasses. These models can represent the ternary excess Gibbs energy of the NaCl-KCl-H2O and Ca-Mg-Fe2+ garnet (Ca3Al2Si3O12 - Mg3Al2Si3O12 - Fe3Al2Si3O12) systems relatively well without a ternary correction term. The deviation from the reference data increases in the central region of the composition triangle. Toop's model with constant mole fractions of NaCl and Mg best simulated the ternary systems among the models. The path independent Muggianu model was applied to diopside (CaMgSi2O6) -jadeite (NaAlSi2O6) - acmite (NaFe3+Si2O6) ternary as an example. Although there exists intrinsic uncertainty in calculation without the ternary interaction term, these models, especially, Muggianu and Kohler can be good approximation methods for prediction of the ternary excess properties of the natural mineral solid solutions, devoid of ternary experimental thermodynamic data.  相似文献   

20.
A series of Bi3+ and Gd3+ doped ZnB2O4 phosphors were synthesized with solid state reaction technique. X-ray diffraction technique was employed to study the structure of prepared samples. Excitation and emission spectra were recorded to investigate the luminescence properties of phosphors. The doping of Bi3+ or Gd3+ with a small amount (no more than 3 mol%) does not change the structure of prepared samples remarkably. Bi3+ in ZnB2O4 can emit intense broad-band purplish blue light peaking at 428 nm under the excitation of a broad-band peaking at 329 nm. The optimal doping concentration of Bi3+ is experimentally ascertained to be 0.5 mol%. The decay time of Bi3+ in ZnB2O4 changes from 0.88 to 1.69 ms. Gd3+ in ZnB2O4 can be excited with 254 nm ultraviolet light and yield intense 312 nm emission. The optimal doping concentration of Gd3+ is experimentally ascertained to be 5 mol%. The decay time of Gd3+ in ZnB2O4 changes from 0.42 to 1.36 ms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号