共查询到20条相似文献,搜索用时 0 毫秒
1.
多变量数据分析及应用研究 总被引:4,自引:0,他引:4
在统计信号处理及其相关领域,多变量数据的描述和分析一直是人们广泛关注的研究课题.在现有的多变量数据分析方法中,基于二阶统计特性的主分量分析(PCA)和基于高阶统计特性的独立分量分析(ICA)是两种非常有代表性的方法.本文在简要介绍PCA和ICA基本原理的基础上,结合脑电消噪问题,对两种方法的性能和特点进行了较深入地比较.实验结果表明,在非高斯信号处理上,独立分量分析方法具有明显的优势. 相似文献
2.
应用核独立分量分析的电力用户负荷曲线估计 总被引:1,自引:0,他引:1
提出了核独立分量分析算法,即白化的核主分量分析加上独立分量分析算法。该算法在电网信息不足时,利用电网部分支路的潮流作为观测值,就可以完成对用户负荷曲线的估计。经过IEEE 9节点系统的仿真验证,结果表明,观测值在经过白化的核主分量分析算法处理后,非高斯性增强。应用独立分量分析算法对处理后的观测值进行盲源分离后,所得用户负荷需求曲线的估计值逼近实际值。与仅用独立分量分析方法的仿真结果相比,估计误差降低,相关系数增加。 相似文献
3.
盲源分离(BSS)是信号处理领域的一个热点问题。独立分量分析(ICA)是一种基于高阶统计量的信号分析方法,它可以找到隐含在数据中的独立分量,已广泛应用于信号处理领域。为了有效地对混合图像进行盲源分离,介绍了一种基于改进的快速固定点算法(FastlCA),对经过随机线性混合后的模糊图像进行盲源分离。仿真结果显示,该算法可以很有效地对线性混合图像进行盲源分离。 相似文献
4.
采用了盲源分离的方法对机械振动信号进行了研究。首先简要地介绍了盲信号分离基本原理。基于最大负熵的原理,建立了用独立分量分析方法估计分离矩阵的FastICA的模型,并给出了实现步骤,编制了相应的程序。对实际振动传感器采集到的信号并进行盲分离实验,不同特征的信号可以被分离开来,分离出的信号极大地保留了源信号的信息特征。实验结果表明此方法是有效的,可作为振动机械故障诊断的信号预处理方法. 相似文献
5.
Hongyan LI Jianfen MA Deng''ao LI Huakui WANG 《Frontiers of Electrical and Electronic Engineering in China》2008,3(3):343-346
This paper introduces the fixed-point learning algorithm based on independent component analysis (ICA); the model and process of this algorithm and simulation results are presented. Kurtosis was adopted as the estimation rule of independence. The results of the experiment show that compared with the traditional ICA algorithm based on random grads, this algorithm has advantages such as fast convergence and no necessity for any dynamic parameter, etc. The algorithm is a highly efficient and reliable method in blind signal separation. __________ Translated from Journal of Taiyuan University of Technology, 2007, 38(1): 35–37 [译自: 太原理工大学学报] 相似文献
6.
7.
8.
独立分量分析在谐波源辨识中的应用 总被引:3,自引:0,他引:3
为了确定电力系统谐波污染责任和治理责任,提出一种基于独立分量分析ICA(independent component analysis)的谐波源辨识方法.利用独立分量分析可以将相互独立的源信号从其线性混合的信号中分离出来的特点,将谐波源看作相互独立的源信号,对其混合后的电压信号进行计算可分离出相应的谐波源信号,完成谐波源的辨识.在Matlab软件中对电弧炉、饱和变压器这类典型的谐波源进行仿真并验证.结果表明该方法有很好的检测和判别效果. 相似文献
9.
10.
11.
We propose an improvement of an information filtering process with independent components selection. The independent components are obtained by Independent Components Analysis and considered as topics. Selection of independent components is an efficient method of improving the accuracy of the information filtering for the purpose of extraction of similar topics by focusing on their meanings. To achieve this, we select the topics by Maximum Distance Algorithm with Jensen‐Shannon divergence. In addition, document vectors are represented by the selected topics. We create a user profile from transformed data with a relevance feedback. Finally, we sort documents by the user profile and evaluate the accuracy by imputation precision. We carried out an evaluation experiment to confirm the validity of the proposed method considering meanings of components used in this experiment. © 2008 Wiley Periodicals, Inc. Electr Eng Jpn, 163(2): 49–56, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20519 相似文献
12.
13.
We propose an information filtering system using latent semantics obtained by Singular Value Decomposition (SVD) and Independent Component Analysis (ICA). Document vectors usually have too many elements. Thus, we are obliged to spend much time applying the ICA for the document vectors. To solve this problem, the present method combines the SVD which is often used for decreasing dimension and the ICA. Before applying the ICA, we represent documents with singular vectors obtained by the SVD. We measure processing times to carry out the ICA without the SVD and the proposed method for comparison of these methods. In addition, we construct a user profile in space consisting of latent semantics obtained by the present method, and discuss accuracy of recommendation. © 2008 Wiley Periodicals, Inc. Electr Eng Jpn, 165(2): 53–59, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20564 相似文献
14.
15.
Koichiro Kobayashi Masahito Yoshizawa Kenji Nakai Yoshinori Uchikawa 《Electrical Engineering in Japan》2008,162(1):7-14
In magnetocardiogram (MCG) measurements, magnetic noise from the wire used to suture the sternum after heart surgery becomes a problem. Independent component analysis is an effective method of noise rejection. In this study, MCG measurements were made on a normal subject with the wire attached and without the wire. We performed signal processing by independent component analysis in order to reduce the effect of magnetic noise from the wire. Comparison of the waveforms after this signal processing with waveforms without the wire clearly showed that magnetic noise caused by the wire was reduced. This result clearly shows that independent component analysis is effective for the removal of magnetic noise from the wire. ©2007 Wiley Periodicals, Inc. Electr Eng Jpn, 162(1): 7–14, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20589 相似文献
16.
Xuansen He Fan He Tao Zhu 《International Journal of Adaptive Control and Signal Processing》2017,31(3):379-397
Independent component analysis (ICA) is one of the most powerful methods for solving blind source separation problem. In various ICA methods, the Fast‐ICA is an excellent algorithm, and it finds the demixing matrix that optimizes the nonlinear contrast function. There are three original contrast functions in the Fast‐ICA to separate super‐Gaussian and sub‐Gaussian sources, and their respective derivatives are similar to nonlinearities used in neural networks. For the separation of large‐scale super‐Gaussian sources, however, the contrast functions and the nonlinearities are not optimal owing to high computational cost. To solve this potential problem, this paper proposes four rational polynomial functions to replace the original nonlinearities. Because the rational polynomials can be quickly evaluated, when they are used in the Fast‐ICA, the computational load of the algorithms can be effectively reduced. The proposed rational functions are derived by the Pade approximant from Taylor series expansion of the original nonlinearities. To reduce the error of approximation, we make the behaviors of rational functions approach that of the original ones within an effective range as well as possible. The simulation results show that the Fast‐ICA algorithms with rational nonlinearities not only can speed up the convergence but also improve the separation performance of super‐Gaussian blind source separation. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
17.
针对脑电信号非侵入采集造成被采集信号中含有较多高频噪声信号并且信号难以被干净分离的特点,设计一种将独立分量分析法(ICA)与小波变换法相结合的一种改进型算法,实现对已分离的脑电信号降噪提取作用。通过小波变换,滤除目标信号中的高频信号,将该信号重构为ICA算法的输入信号,克服独立分量分析法不能区分噪声的缺点。将两种方法结合提取脑电信号中诱发电位的提取,将小波包滤波后的信号重构为ICA的输入信号,有效的降低了噪声信号对EP信号的影响,在信源分离中取得了良好的效果。 相似文献
18.
19.
分析了传统"延迟求和"波束形成(beamforming)相控空间扫描原理,并进行了仿真实验研究,仿真表明由于旁瓣、栅瓣等问题的存在使信号源方位识别不准确.针对此问题本文提出了一种基于beamforming方向图矩阵进行声源定向的方法,理论分析和实验表明该方法能够有效地提高分辨率,提高定位的准确性,并基于该原理提出了用于工程的算式. 相似文献
20.
双向工频通信系统是一种基于配电网络的通信系统。通信信号在配电网中传输时,其背景信号中必然含有大量的谐波成分,这会给通信信号的检测带来极大的困难。该文根据双向工频通信的信号特征,提出了基于独立分量分析的谐波消除方法。该方法在消除谐波干扰的同时,有用信号成分几乎不被破坏。通过Matlab对此方法进行了验证,取得了良好的效果。 相似文献