首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— In this paper, many popular methods to study transflective liquid‐crystal‐displays (LCDs) have been discussed, and several new transflective LCD configurations with a single‐cell gap have been proposed. The traditional double‐cell‐gap method gives the best match of the transmittance/reflectance voltage curve (TVC/RVC) and also the widest viewing angle, but also brings the highest fabrication complexity. The single‐cell‐gap transflective LCD is much easier to fabricate and also shows a good match of TVC/RVC. A new methodology has been shown to find optimal configurations for single‐cell‐gap transflective LCDs. New configurations using multimode in a single pixel include twisted nematic (TN) optically compensated bend (OCB), TN electrically controlled birefringence (ECB), and TN low‐twisted nematic (LTN). TN and hybrid‐aligned nematic (HAN) modes have been investigated for single‐mode transflective LCDs. The results exhibit high contrast ratio, a good match of TVC/RVC, as well as wide viewing angle.  相似文献   

2.
We demonstrate a fringe‐field switching nematic liquid crystal with electro‐optical behavior modulated by both bulk and surface polymer stabilization. The polymer is formed by ultraviolet irradiation‐induced phase separation of various amounts of a reactive monomer in the planar‐aligned nematic liquid crystal. Simulation is carried out to verify the effect of anchoring energy. Experimental evidence validates the effect of monomer concentration on transmittance–voltage and response times curves of fringe‐field switching cells. The polymer‐stabilized alignment with a higher polymer concentration escalates the interaction between the liquid crystal and the polymer structure and increases the surface anchoring energy. The polymer stabilization also improves the dynamic response times of liquid crystal. The enabling polymer‐stabilized alignment technique has excellent electro‐optical properties such as a very good dark state, high optical contrast, and fast rise and decay times that may lead to development of a wide range of applications.  相似文献   

3.
Abstract— A fringe‐field‐switching (FFS) mode cell having LC alignment has been developed by using a non‐rubbing method, a ion‐beam‐alignment method on a‐C:H thin film, to analyze the electro‐optical characteristics of this cell. The suitable inorganic thin film for FFS‐LCDs and the alignment capabilities of nematic liquid crystal (NLC) have been studied. An excellent voltage‐transmittance (V‐T) and response‐time curve for the ion‐beam‐aligned FFS‐LCDs were observed using oblique ion‐beam exposure on DLC thin films.  相似文献   

4.
Abstract— The alignment properties of the azo‐dye photo‐alignment material SD‐1/SDA‐2 on plastic substrates are investigated. Important liquid‐crystal cell parameters, such as azimuthal and polar anchoring energy, pretilt angle, voltage holding ratio, and the corresponding electro‐optical properties are presented. Excellent alignment with high anchoring energy can be achieved with a polarized UV dose less than 1.0 J/cm2. A reflective six‐digit flexible passive‐matrix‐driven TN‐LCD for smart‐card applications showing excellent electro‐optical properties is demonstrated.  相似文献   

5.
Abstract— V‐shaped electro‐optical response is shown, both theoretically and experimentally, to be an inherent property of a deformed‐helix ferroelectric liquid‐crystal cell (DHFLC) under a special choice of the applied rectangular alternating‐electric‐field waveform, frequency, and cell geometry. In contrast to other known V‐shaped ferroelectric liquid‐crystal (FLC) modes, the discovered V‐shaped switching is observed in a broadband frequency range including 1 kHz, and not at a certain characteristic frequency. This type of V‐shaped switching allows for a drastic increase in the operating frequency of field‐sequential‐color (FSC) LCD cells in comparison with fast nematic liquid‐crystal (NLC) modes.  相似文献   

6.
Abstract— Two configurations, (i) a double‐cell‐gap twisted nematic (DTN) liquid‐crystal display (LCD) and (ii) a single‐cell‐gap twisted‐nematic (TN) liquid‐crystal display (LCD) using a twisted LC retarder, were optimized for transflective liquid‐crystal displays. For the DTN configuration, both the single‐cell‐gap approach and the double‐cell‐gap approach were considered. The optimized configurations exhibit a high contrast ratio, wide viewing angles, and achromatic (black/white) switching in both the transmissive and reflective modes. They are easy to fabricate and also possess a perfect dark state. Both are suitable for high‐quality transflective TFT‐LCDs.  相似文献   

7.
Abstract— A new method for determining the thickness, twist angle, and azimuth of the director for a substrate with twisted‐nematic (TN) and super‐twisted‐nematic (STN) liquid‐crystal (LC) cells has been proposed. The measurement was carried out by using an optical system which consisted of a monochromatic light source, polarizer, rotating analyzer, and software programs. The polarization transfer matrix, or Jones matrix, of a TN or an STN LC cell is formulated by the Fourier coefficient of the signal that is modulated by the rotating analyzer. These three alignment parameters are derived directly from components of the Jones matrix. We made a special effort to design the system to ensure accurate, stable, and quick measurement. Thus, the three parameters were determined simultaneously within a few seconds with good reproducibility; e.g., the standard deviation of the twist angle in the TN cell is 0.02° or less.  相似文献   

8.
Abstract— We have considered the interference in polymer‐dispersed nematic liquid‐crystal (PDNLC) films caused by the superposition of light beams that pass through and between the LC droplets. The relative phase retardation of the beams depends on the applied voltage, and, as a consequence, interference oscillations can occur at transmittance‐voltage curves. Typical forms of the curves for composite films with various structures are presented. Interference oscillations were revealed not only in the static electro‐optical characteristics but in the dynamic ones also. For PDLC films based on commercially available components produced without thorough purification, the combination of interference and ionic effects is observed in the dynamics of the optical response. The relaxation of transmittance due to the depolarization ionic field is presented, depending on droplet size, temperature, pulse duration, and the concentration of the ionic admixture.  相似文献   

9.
Abstract— Optical alignment and micro‐patterning of the alignment of liquid‐crystal displays (LCDs) by linear photopolymerization (LPP) technology renders high‐quality multi‐domain twisted‐nematic (TN) and supertwisted‐nematic (STN) displays with broad fields of view over wide temperature ranges feasible. The prerequisites are the generation of photo‐induced high‐resolution azimuthal alignment patterns with defined bias‐tilt angles 0° ≤ θ ≤ 90°. For the first time, LPP‐aligned single‐ and dual‐domain vertically aligned nematic LCDs (VAN‐LCDs) are presented. Dual‐domain VAN‐LCDs are shown to exhibit broad fields of view which are further broadened by combining the displays with LPP‐aligned optical compensators made of liquid‐crystal polymers.  相似文献   

10.
Abstract— Multistable electro‐optical modes exist under certain conditions in ferroelectric liquid‐crystal (FLC) cells, which means that any light‐transmission level can be memorized after the driving voltage is switched off. The multistability is responsible for three new electro‐optical modes with different shapes of the gray‐scale curve that can be either S‐shaped (double or single dependent upon the applied‐voltage pulse sequence and boundary conditions) or V‐shaped dependent upon boundary conditions and FLC cell parameters. The origin of these modes will be described.  相似文献   

11.
Abstract— A single‐cel l‐gap transflective liquid‐crystal display with two types of liquid‐crystal alignment based on an in‐plane‐switching structure is proposed. The transmissive region is almost homeotropically aligned with the rubbed surfaces at parallel directions while the reflective region has a homeotropic liquid‐crystal alignment. For every driving voltage for a positive‐dielectric‐anisotropy nematic liquid crystal, the effective cell‐retardation value in the transmissive region becomes larger than that in the reflective region because of optical compensation film which is generated by low‐pretilt‐angle liquid crystal in the transmissive region. Under the optimization of the liquid‐crystal cell and alignment used in the transmissive and reflective areas, the transmissive and reflective parts have similar gamma curves. An identical response time in both the transmissive and reflective regions and a desirable viewing angle for personal portable displays can also be obtained.  相似文献   

12.
Abstract— The molecular design of a liquid crystal to stabilize a blue phase III (BPIII) is reviewed, and the electro‐optical switching with a response time on the order of 10?2 sec for BPIII exhibited by a novel chiral liquid crystal is reported. Binaphthyl derivatives and T‐shaped compounds are presented, and the structure‐property correlations of the chiral compounds are discussed. Two origins of the twisting power of the compounds, i.e., their inherent molecular chirality and the chirality‐induced twist conformation, play an important role in the appearance of the BPIII. Furthermore, BPIII was also induced in some binary mixtures of a host nematic liquid‐crystal possessing molecular biaxiality and a conventional chiral compound. The electro‐optical switching in the BPIII is attributed to an electric‐field‐induced phase transition between the BPIII and nematic (N) phases. BPIII is on the microscopically twisted nematic order, but is macroscopically isotropic. Therefore, the present technology can offer a pronounced black state in the BPIII without surface treatment and a homogeneous bright state in the induced N phase.  相似文献   

13.
Novel liquid‐crystal (LC) mixtures featuring high optical anisotropy Δn) and small rotational viscosity (γ1) were developed for field‐sequential‐color TN‐LCD applications. The dynamic behavior of the TN cells in a narrow‐gap range was studied and new tolane LC substances were introduced. The newly developed LC mixtures, having a narrow‐gap cell, enable a TN‐LCD to switch fast enough to be applied to field‐sequential‐color displays not only at a room temperature but also at low temperatures. It was also confirmed that the voltage‐holding ratio (VHR) is sufficiently high in field‐sequential addressing conditions and, therefore, the LC mixtures can be used in active‐matrix LCDs. For practical use, a storage test of the TN cells under light irradiation was performed to evaluate their voltage‐holding property. It was also confirmed that their high VHR can be maintained for over 10,000 hours under practical conditions.  相似文献   

14.
Abstract— Liquid crystals have been extensively employed in photonic devices, especially in current flat‐panel displays. Demands on high‐quality electro‐optical performance of liquid‐crystal displays have continued to impel delicate molecular designs, chemical syntheses, as well as advanced cell‐manufacturing processes, leading to a reduced dc offset and faster intrinsic response in the devices. Here, a novel approach toward the reduction of the residual dc and response time is reported based on carbon‐nanotube doping. It is demonstrated that a minute amount of carbon nanotubes as a dopant can suppress the unwanted ion effect, invariably lower the rotational viscosity, and modify other physical properties of the liquid crystals, giving the approach an opportunity in display applications.  相似文献   

15.
Abstract— A liquid‐crystal line retardation‐film technology by using a rod‐like liquid‐crystalline polymer (LCP) for various LCD modes have been developed. In particular, considerable improvements in viewing‐angle performance have been achieved for the twisted‐nematic (TN) and the transmissive/transflective electrically controlled birefringence (ECB) modes by using hybrid aligned nematic film (NH Film).  相似文献   

16.
Abstract— Although the common twisted‐nematic liquid‐crystal displays (TN‐LCD) has excellent contrast and low color dispersion, it suffers from small viewing angle when driven into the homeotropic state. Among the many techniques proposed, in‐plane switching (IPS) has been quite effective in improving viewing angle. However, there may be difficulty in adopting conventional IPS to higher‐definition displays because it suffers from limited storage capacitance and reduced transmittance. A new comb‐on‐plane switching (COPS) electrode design is proposed. Compared to conventional IPS, COPS allows for lower switching voltage and offers advantages including naturally scalable storage capacitance, wide viewing angle with TN‐like high transmittance, and low color dispersion.  相似文献   

17.
Abstract— The modification of the properties of existing LCs by doping them with ferroelectric micro‐ and nano‐particles will be reported. This approach, in contrast to the conventional time‐consuming and expensive chemical synthetic methods, enriches and enhances the electro‐optical performance of many liquid‐crystal materials. The effect of the ferroelectric particles on the nematic, smectic, and cholesteric phases will be discussed. The performance of these new composite systems in various devices, including displays, light modulators, and beam‐steering devices, will be reported.  相似文献   

18.
Abstract— The electro‐optical properties of optically isotropic liquid‐crystalline composites prepared by in‐situ photo‐polymerization of cross‐linking monomers in the isotropic phase of chiral liquid crystals were investigated. The magnitude of the electric birefringence of the composites decreased as the chirality of the liquid crystal increased. The clear Kerr effect was observed for the composites with high chirality. A large Kerr constant, being relatively insensitive to temperature, was obtained for the composites even in a temperature range below the isotropic‐chiral‐nematic phase‐transition temperature. The response time of the Kerr effect at room temperature was on the order of tens to hundreds of microseconds.  相似文献   

19.
In order to realize a paper‐like display using polymer‐network liquid‐crystal (PNLC) films, an increase in backscattering intensity is required. The morphology of the films, and the molecular interactions between the liquid crystals and polymers forming the polymer network, both play an important role in determining film electro‐optical properties such as the driving voltage and the reflectance. We have analyzed several factors related to the morphology of the films. Aiming at a reduction in the driving voltage, the effects of alkyl side‐chains in diacrylates have been investigated. Based on the results, we successfully produced a prototype paper‐like display.  相似文献   

20.
Abstract— The in‐plane‐switching (IPS) mode exhibits an inherently wide viewing angle and has been widely used for liquid‐crystal‐display (LCD) TVs. However, its transmittance is limited to ~76% compared to that of a twisted‐nematic (TN) cell if a positive‐dielectric‐anisotropy LC is employed. A special electrode configuration that fuses the switching mechanism of the conventional IPS and the fringe‐field switching (FFS) to boost the transmittance to ~90% using a positive LC has been developed. The new mode exhibits an equally wide viewing angle as the IPS and FFS modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号