首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between the nanoscale structure of vanadium pentoxide nanotubes and their ability to accommodate Li+ during intercalation/deintercalation is explored. The nanotubes are synthesized using two different precursors through a surfactant‐assisted templating method, resulting in standalone VO x (vanadium oxide) nanotubes and also “nano‐urchin”. Under highly reducing conditions, where the interlaminar uptake of primary alkylamines is maximized, standalone nanotubes exhibit near‐perfect scrolled layers and long‐range structural order even at the molecular level. Under less reducing conditions, the degree of amine uptake is reduced due to a lower density of V4+ sites and less V2O5 is functionalized with adsorbed alkylammonium cations. This is typical of the nano‐urchin structure. High‐resolution TEM studies revealed the unique observation of nanometer‐scale nanocrystals of pristine unreacted V2O5 throughout the length of the nanotubes in the nano‐urchin. Electrochemical intercalation studies revealed that the very well ordered xerogel‐based nanotubes exhibit similar specific capacities (235 mA h g?1) to Na+‐exchange nanorolls of VOx (200 mA h g?1). By comparison, the theoretical maximum value is reported to be 240 mA h g?1. The VOTPP‐based nanotubes of the nano‐urchin 3D assemblies, however, exhibit useful charge capacities exceeding 437 mA h g?1, which is a considerable advance for VOx based nanomaterials and one of the highest known capacities for Li+ intercalated laminar vanadates.  相似文献   

2.
Graphene scroll is an emerging 1D tubular form of graphitic carbon that has potential applications in electrochemical energy storage. However, it still remains a challenge to composite graphene scrolls with other nanomaterials for building advanced electrode configuration with fast and durable lithium storage properties. Here, a transition‐metal‐oxide‐based hierarchically ordered 3D porous electrode is designed based on assembling 1D core–sheath MnO@N‐doped graphene scrolls with 2D N‐doped graphene ribbons. In the resulting architecture, porous MnO nanowires confined in tubular graphene scrolls are mechanically isolated but electronically well‐connected, while the interwoven graphene ribbons offer continuous conductive paths for electron transfer in all directions. Moreover, the elastic graphene scrolls together with enough internal voids are able to accommodate the volume expansion of the enclosed MnO. Because of these merits, the as‐built electrode manifests ultrahigh rate capability (349 mAh g?1 at 8.0 A g?1; 205 mAh g?1 at 15.0 A g?1) and robust cycling stability (812 mAh g?1 remaining after 1000 cycles at 2.0 A g?1) and is the most efficient MnO‐based anode ever reported for lithium‐ion batteries. This unique multidimensional and hierarchically ordered structure design is believed to hold great potential in generalizable synthesis of graphene scrolls composited with oxide nanowires for mutifuctional energy storage.  相似文献   

3.
Crack‐free, mesoporous SnO2 films with highly crystalline pore walls are obtained by evaporation‐induced self‐assembly using a novel amphiphilic block‐copolymer template (“KLE” type, poly(ethylene‐co‐butylene)‐block‐poly(ethylene oxide)), which leads to well‐defined arrays of contracted spherical mesopores by suitable heat‐treatment procedures. Because of the improved templating properties of these polymers, a facile heat‐treatment procedure can be applied whilst keeping the mesoscopic order intact up to 600–650 °C. The formation mechanism and the mesostructural evolution are investigated by various state‐of‐the‐art techniques, particularly by a specially constructed 2D small‐angle X‐ray scattering setup. It is found that the main benefit from the polymers is the formation of an ordered mesostructure under the drastic conditions of using molecular Sn precursors (SnCl4), taking advantage of the large segregation strength of these amphiphiles. Furthermore, it is found that the crystallization mechanism is different from other mesostructured metal oxides such as TiO2. In the case of SnO2, a significant degree of crystallization (induced by heat treatment) already starts at quite low temperatures, 250–300 °C. Therefore, this study provides a better understanding of the general parameters governing the preparation of mesoporous metal oxides films with crystalline pore walls.  相似文献   

4.
Zinc oxide in the form of nanoscale materials can be regarded as one of the most important semiconductor oxides at present. However, the question of how chemical defects influence the properties of nanoscale zinc oxide materials has seldom been addressed. In this paper, we report on the introduction of defects into nanoscale ZnO, their comprehensive analysis using a combination of techniques (powder X‐ray diffraction (PXRD), X‐ray absorption spectroscopy/extended X‐ray absorption fine structure (XAS/EXAFS), electron paramagnetic resonance (EPR), magic‐angle spinning nuclear magnetic resonance (MAS‐NMR), Fourier‐transform infrared (FTIR), UV‐vis, and photoluminescence (PL) spectroscopies coupled with ab‐initio calculations), and the investigation of correlations between the different types of defects. It is seen that defect‐rich zinc oxide can be obtained under kinetically controlled conditions of ZnO formation. This is realized by the thermolysis of molecular, organometallic precursors in which ZnO is pre‐organized on a molecular scale. It is seen that these precursors form ZnO at low temperatures far from thermodynamic equilibrium. The resulting nanocrystalline ZnO is rich in defects. Depending on conditions, ZnO of high microstructural strain, high content of oxygen vacancies, and particular content of heteroatom impurities can be obtained. It is shown how the mentioned defects influence the electronic properties of the semiconductor nanoparticles.  相似文献   

5.
Engineering non‐noble metal–based electrocatalysts with superior water oxidation performance is highly desirable for the production of renewable chemical fuels. Here, an atomically thin low‐crystallinity Fe–Mn–O hybrid nanosheet grown on carbon cloth (Fe–Mn–O NS/CC) is successfully synthetized as an efficient oxygen evolution reaction (OER) catalyst. The synthesis strategy involves a facile reflux reaction and subsequent low‐temperature calcination process, and the morphology and composition of hybrid nanosheets can be tailored conveniently. The defect‐rich Fe–Mn–O ultrathin nanosheet with uniform element distribution enables exposure of more catalytic active sites; moreover, the atomic‐scale synergistic action of Mn and Fe oxide contributes to an enhanced intrinsic catalytic activity. Therefore, the optimized Fe–Mn–O hybrid nanosheets, with lateral sizes of about 100–600 nm and ≈1.4 nm in thickness, enable a low onset potential of 1.46 V, low overpotential of 273 mV for current density of 10 mA cm?2, a small Tafel slope of 63.9 mV dec?1, and superior durability, which are superior to that of individual MnO2 and FeOOH electrode, and even outperforming most reported MnO2‐based electrocatalysts.  相似文献   

6.
A novel dendrimer‐templating method for the synthesis of CuO nanoparticles and the in situ construction of ordered inorganic–organic CuO–G2Td(COOH)16rice‐shaped architectures (RSAs) with analogous monocrystalline structures are reported. The primary CuO nanoparticles are linked by the G2Td(COOH)16 dendrimer. This method provides a way to preserve the original properties of primary CuO nanoparticles in the ordered hybrid nanomaterials by using the 3D rigid polyphenylene dendrimer (G2Td(COOH)16) as a space isolation. The primary CuO nanoparticles with diameter of (6.3 ± 0.4) nm are synthesized via four successive reaction steps starting from the rapid reduction of Cu(NO3)2 by using NaBH4 as reducer and G2Td(COOH)16 as surfactant. The obtained hybrid CuO–G2Td(COOH)16 RSA, formed in the last reaction step, possesses a crystal structure analogous to a monocrystal as observed by transmission electron microscopy(TEM). In particular, the formation process of the RSA is monitored by UV–vis, TEM, and X‐ray diffraction. Small angle X‐ray scattering and Fourier transform infrared spectroscopy are used to investigate the role of the dendrimer in the RSA formation process. The obtained results illuminate that Cu2+? COO? coordination bonds play an indispensable role in bridging and dispersing the primary CuO nanoparticles to induce and maintain the hybrid RSA. More importantly, the RSA is retained through the Cu2+? COO?coordination bonds even with HCl treatment, suggesting that the dendrimers and Cu2+ ions may form rice‐shaped polymeric complexes which could template the assembly of CuO nanoparticles towards RSAs. This study highlights the feasibility and flexibility of employing the peculiar dendrimers to in‐situ build up hybrid architectures which could further serve as templates, containers or nanoreactors for the synthesis of other nanomaterials.  相似文献   

7.
The application of graphite anodes in potassium‐ion batteries (KIB) is limited by the large variation in lattice volume and the low diffusion coefficient of potassium ions during (de)potassiation. This study demonstrates nitrogen‐doped, defect‐rich graphitic nanocarbons (GNCs) as high‐performance KIB anodes. The GNCs with controllable defect densities are synthesized by annealing an ethylenediaminetetraacetic acid nickel coordination compound. The GNCs show better performance than the previously reported thin‐walled graphitic carbonaceous materials such as carbon nanocages and nanotubes. In particular, the GNC prepared at 600 °C shows a stabilized capacity of 280 mAh g?1 at 50 mA g?1, robust rate capability, and long cycling life due to its high‐nitrogen‐doping, short‐range‐ordered, defect‐rich graphitic structure. A high capacity of 189 mAh g?1 with a long cycle life over 200 cycles is demonstrated at a current density of 200 mA g?1. Further, it is confirmed that the potassium ion storage mechanism of GNCs is different from that of graphite using multiple characterization methods. Specifically, the GNCs with numerous defects provide more active sites for the potassiation process, which results in a final discharge product with short‐range order. This study opens a new pathway for designing graphitic carbonaceous materials for KIB anodes.  相似文献   

8.
A new hybrid nanoreactor framework with poly(ethylene oxide)‐perforated silica walls is designed to encapsulate hollow manganese oxide nanoparticles (MONs) of high distinctness and homogeneity. Achieved by an interfacial templating scheme, the nanoreactor ensures that acidic etching of MONs by an acetate buffer solution is highly controlled for precise control of the hollow interior. As such, hollow MONs with different nanostructures are developed successfully through a facile acetate buffer solution etching. The resultant hollow MONs are integrated within the hybrid nanoreactor and demonstrate superior r1 relativity of up to 2.58 mm ?1 s?1 for T1 magnetic resonance imaging (MRI). By modifying the nanoreactor architecture, it is also demonstrated that the efficacy of MONs as T1 MRI contrast agents can be significantly improved if an optimal cluster of hollow MONs is encapsulated into the hybrid silica framework. The evolution of core morphology with time is studied to elucidate the etching mechanism. It is revealed that the hollow formation arises due to the surface stabilization of MONs by acetate ions and the subsequent acidic etching of the interior core in a sporadic manner. This is different from the commonly reported nanoscale Kirkendall effect or the selective etching of the core–shell MnO/Mn3O4 structure.  相似文献   

9.
A sonochemical method has been successfully used in order to incorporate MnO2 nanoparticles inside the pore channels of CMK‐3 ordered mesoporous carbon. Modification of the intrachannel surfaces of CMK‐3 to make them hydrophilic enables KMnO4 to readily penetrate the pore channels. At the same time, the modification changes the surface reactivity, enabling the formation of MnO2 nanoparticles inside the pores of CMK‐3 by the sonochemical reduction of metal ions. The resultant structures were characterized by X‐ray diffraction (XRD), nitrogen adsorption, and transmission electron microscopy (TEM). CMK‐3 with 20 wt.‐% loading of MnO2 inside CMK‐3 delivered an improved discharge performance of 223 mA h g–1 at a relatively high rate of 1 A g–1. Almost no decrease in specific capacity is observed for the second cycle, and a discharge capacity of more than 165 mA h g–1 is retained after 100 cycles. This is attributed to the nanometer‐sized MnO2 formed inside CMK‐3 and the high surface area of the mesopores (3.1 nm) in which the MnO2 nanoparticles are formed.  相似文献   

10.
An increase in the energy density of lithium‐ion batteries has long been a competitive advantage for advanced wireless devices and long‐driving electric vehicles. Li‐rich layered oxide, xLi2MnO3?(1?x)LiMn1?y?zNiyCozO2, is a promising high‐capacity cathode material for high‐energy batteries, whose capacity increases by increasing charge voltage to above 4.6 V versus Li. Li‐rich layered oxide cathode however suffers from a rapid capacity fade during the high‐voltage cycling because of instable cathode–electrolyte interface, and the occurrence of metal dissolution, particle cracking, and structural degradation, particularly, at elevated temperatures. Herein, this study reports the development of fluorinated polyimide as a novel high‐voltage binder, which mitigates the cathode degradation problems through superior binding ability to conventional polyvinylidenefluoride binder and the formation of robust surface structure at the cathode. A full‐cell consisting of fluorinated polyimide binder‐assisted Li‐rich layered oxide cathode and conventional electrolyte without any electrolyte additive exhibits significantly improved capacity retention to 89% at the 100th cycle and discharge capacity to 223–198 mA h g?1 even under the harsh condition of 55 °C and high charge voltage of 4.7 V, in contrast to a rapid performance fade of the cathode coated with polyvinylidenefluoride binder.  相似文献   

11.
The application of graphene‐based membranes is hindered by their poor stability under practical hydrodynamic conditions. Here, nanocarbon architectures are designed by intercalating surface‐functionalized, small‐diameter, multi‐walled carbon nanotubes (MWCNTs) into reduced graphene oxide (rGO) sheets to create highly stable membranes with improved water permeability and enhanced membrane selectivity. With the intercalation of 10 nm diameter MWCNTs, the water permeability reaches 52.7 L m?2 h?1 bar?1, which is 4.8 times that of pristine rGO membrane and five to ten times higher than most commercial nanofiltration membranes. The membrane also attains almost 100% rejection for three organic dyes of different charges. More importantly, the membrane can endure a turbulent hydrodynamic flow with cross‐flow rates up to 2000 mL min?1 and a Reynolds number of 4667. Physicochemical characterization reveals that the inner graphitic walls of the MWCNTs can serve as spacers, while nanoscale rGO foliates on the outer walls interconnect with the assimilated rGO sheets to instill superior membrane stability. In contrast, intercalating with single‐walled nanotubes fails to reproduce such stability. Overall, this nanoarchitectured design is highly versatile in creating both graphene‐rich and CNT‐rich all‐carbon membranes with engineered nanochannels, and is regarded as a general approach in obtaining stable membranes for realizing practical applications of graphene‐based membranes.  相似文献   

12.
Heterojunction solar cells of p‐type cupric oxide (CuO) and n‐type silicon (Si), p‐CuO/n‐Si, have been fabricated using conventional sputter and rapid thermal annealing techniques. Photovoltaic properties with an open‐circuit voltage (Voc) of 380 mV, short circuit current (Jsc) of 1.2 mA/cm2, and a photocurrent of 2.9 mA/cm2 were observed for the solar cell annealed at 300 °C for 1 min. When the annealing duration was increased, the photocurrent increased, but the Voc was found to reduce because of the degradation of interface quality. An improvement in the Voc resulting to a record value of 509 mV and Jsc of 4 mA/cm2 with a high photocurrent of ~12 mA/cm2 was achieved through interface engineering and controlling the phase transformation of CuO film. X‐ray diffraction, X‐ray photoelectron spectroscopy, and high‐resolution transmission electron microscopy analysis have been used to investigate the interface properties and crystal quality of sputter‐deposited CuO thin film. The improvement in Voc is mainly due to the enhancement of crystal quality of CuO thin film and interface properties between p‐CuO and n‐Si substrate. The enhancement of photocurrent is found to be due to the reduction of carrier recombination rate as revealed by transient photovoltage spectroscopy analysis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Li‐rich layered oxides are promising cathode materials for next‐generation Li‐ion batteries because of their extraordinary specific capacity. However, the activation process of the key active component Li2MnO3 in Li‐rich materials is kinetically slow, and the complex phase transformation with electrode/electrolyte side reactions causes fast capacity/voltage fading. Herein, a simple thermal treatment strategy is reported to simultaneously tackle these challenges. The introduction of a urea thermal treatment on Li‐rich material Li1.87Mn0.94Ni0.19O3 leads to oxygen deficiencies and partially reduced Mn ions on the oxide surface for activating the Li‐rich phase. In situ synchrotron study confirms that the urea‐treated cathode shows much faster Li extraction from both Li and transition metal layers with less oxygen evolution upon charging than that of untreated counterparts. Moreover, the decomposition products of urea during thermal treatment subsequently deposit on the surface of cathode material, leading to a unique passivation layer against side reactions between electrode and electrolyte. Soft X‐ray absorption spectroscopy reveals the structural evolution mechanism with a significantly suppressed dissolution of Mn species over cycling measurement. The urea‐treated Li1.87Mn0.94Ni0.19O3 shows accelerated activation kinetics to reach high capacity of 270 mA h g–1 and demonstrates excellent capacity retention of 98.49% over 300 cycles with slower voltage decay.  相似文献   

14.
In this work, we investigate the p–n junction region for two different buffer/Cu(In,Ga)(Se,S)2 (CIGSSe) samples having different conversion efficiencies (the cell with pure In2S3 buffer shows a lower efficiency than the nano‐ZnS/In2S3 buffered one). To explain the better efficiency of the sample with nano‐ZnS/In2S3 buffer layer, combined transmission electron microscopy, atom probe tomography, and X‐ray photoelectron spectroscopy studies were performed. In the pure In2S3 buffered sample, a CuIn3Se5 ordered‐defect compound is observed at the CIGSSe surface, whereas in the nano‐ZnS/In2S3 buffered sample no such compound is detected. The absence of an ordered‐defect compound in the latter sample is explained either by the presence of the ZnS nanodots, which may act as a barrier layer against Cu diffusion in CIGSSe hindering the formation of CuIn3Se5, or by the presence of Zn at the CIGSSe surface, which may disturb the formation of this ordered‐defect compound. In the nano‐ZnS/In2S3 sample, Zn was found in the first monolayers of the absorber layer, which may lead to a downward band bending at the surface. This configuration is very stable (Fermi level pinning at the conduction band, as observed for Cd in Cu(In,Ga)Se2) and reduces the recombination rate at the interface. This effect may explain why the sample with ZnS nanodots possesses a higher efficiency. This work demonstrates the capability of correlative transmission electron microscopy, atom probe tomography, and X‐ray photoelectron spectroscopy studies in investigating buried interfaces. The study provides essential information for understanding and modeling the p–n junction at the nanoscale in CIGSSe solar cells. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Nitrogen‐rich porous carbons (NPCs) are the leading cathode materials for next‐generation Zn–air and Li–S batteries. However, most existing NPC suffers from insufficient exposure and harnessing of nitrogen‐dopants (NDs), constraining the electrochemical performance. Herein, by combining silica templating with in situ texturing of metal–organic frameworks, a new bifunctional 3D nitrogen‐rich carbon photonic crystal architecture of simultaneously record‐high total pore volume (13.42 cm3 g?1), ultralarge surface area (2546 m2 g?1), and permeable hierarchical macro‐meso‐microporosity is designed, enabling sufficient exposure and accessibility of NDs. Thus, when used as cathode catalysts, the Zn–air battery delivers a fantastic capacity of 770 mAh gZn?1 at an unprecedentedly high rate of 120 mA cm?2, with an ultrahigh power density of 197 mW cm?2. When hosting 78 wt% sulfur, the Li–S battery affords a high‐rate capacity of 967 mAh g?1 at 2 C, with superb stability over 1000 cycles at 0.5 C (0.054% decay rate per cycle), comparable to the best literature value. The results prove the dominant role of highly exposed graphitic‐N in boosting both cathode performances.  相似文献   

16.
Manganese‐based metal oxide electrode materials are of great importance in electrochemical energy storage for their favorable redox behavior, low cost, and environmental friendliness. However, their storage capacity and cycle life in aqueous Na‐ion electrolytes is not satisfactory. Herein, the development of a biphase cobalt–manganese oxide (Co? Mn? O) nanostructured electrode material is reported, comprised of a layered MnO2?H2O birnessite phase and a (Co0.83Mn0.13Va0.04)tetra(Co0.38Mn1.62)octaO3.72 (Va: vacancy; tetra: tetrahedral sites; octa: octahedral sites) spinel phase, verified by neutron total scattering and pair distribution function analyses. The biphase Co? Mn? O material demonstrates an excellent storage capacity toward Na‐ions in an aqueous electrolyte (121 mA h g?1 at a scan rate of 1 mV s?1 in the half‐cell and 81 mA h g?1 at a current density of 2 A g?1 after 5000 cycles in full‐cells), as well as high rate performance (57 mA h g?1 a rate of 360 C). Electrokinetic analysis and in situ X‐ray diffraction measurements further confirm that the synergistic interaction between the spinel and layered phases, as well as the vacancy of the tetrahedral sites of spinel phase, contribute to the improved capacity and rate performance of the Co? Mn? O material by facilitating both diffusion‐limited redox and capacitive charge storage processes.  相似文献   

17.
Owing to their unique optical, electronic, and catalytic properties, metal nitrides nanostructures are widely used in optoelectronics, clean energy, and catalysis fields. Despite great progress has been achieved, synthesis of defect‐rich (DR) bimetallic nitride nanocrystals or related nanohybrids remains a challenge, and their electrocatalytic application for oxygen evolution reaction (OER) has not been fully studied. Herein, the DR‐Ni3FeN nanocrystals and N‐doped graphene (N‐G) nanohybrids (DR‐Ni3FeN/N‐G) are fabricated through temperature‐programmed annealing and nitridation treatment of NiFe‐layered double hydroxides/graphene oxide precursors by controlling annealing atmosphere. In the nanohybrids, the DR‐Ni3FeN nanocrystals are anchored on N‐G, and mainly show twin crystal defects besides ≈10% of stacking faults. Such nanohybrids can efficiently catalyze OER in alkaline media with a small overpotential (0.25 V) to attain the current density of 10 mA cm?2 and a high turnover frequency (0.46 s?1), superior to their counterparts (the nearly defect‐free Ni3FeN/N‐G), commercial IrO2, and the‐state‐of‐art reported OER catalysts. Except for the superior activity, they show better durability than their counterparts yet. As revealed by microstructural, spectroscopic, and electrochemical analyses, the enhanced OER performance of DR‐Ni3FeN/N‐G nanohybrids originates from the abundant twin crystal defects in Ni3FeN active phase and the strong interplay between DR‐Ni3FeN and N‐G.  相似文献   

18.
Manganese oxide nanocrystals are combined with aluminum oxide nanocrystals to improve their crystallinity via calcination without a significant increase of crystal size. A nanocomposite, consisting of two metal oxides, can be synthesized by the reaction between permanganate anions and aluminum oxyhydroxide keggin cations. The as‐prepared manganese oxide–aluminum oxide nanocomposite is X‐ray amorphous whereas heat‐treatment gives rise to the crystallization of an α‐MnO2 phase at 600 °C and Mn3O4/Mn2O3 and γ‐Al2O3 phases at 800 °C. Electron microscopy and N2 adsorption‐desorption‐isotherm analysis clearly demonstrate that the as‐prepared nanocomposite is composed of a porous assembly of monodisperse primary particles with a size of ~20 nm and a surface area of >410 m2 g?1. Of particular interest is that the small particle size of the as‐prepared nanocomposite is well‐maintained up to 600 °C, a result of the prevention of the growth of manganate grains through nanoscale mixing with alumina grains. The calcined nanocomposite shows very‐high catalytic activity for the oxidation of cyclohexene with an extremely high conversion efficiency of >95% within 15 min. The present results show that the improvement of the crystallinity without significant crystal growth is very crucial for optimizing the catalytic activity of manganese oxide nanocrystals.  相似文献   

19.
Conductive polymer/sulfur composite materials were prepared by heating the mixture of polyacrylonitrile (PAN) and sublimed sulfur. During the heating process, PAN was dehydrogenated by sulfur, forming a conductive main chain similar to polyacetylene. At the same time, the high‐polarity functional group –CN cyclized at the melt state, forming a thermally stable heterocyclic compound in which sulfur was embedded. The nanodispersed composites showed excellent electrochemical properties. Tested as cathode material in a non‐aqueous lithium cell based on poly(vinylidene fluoride) (PVDF) gel electrolyte at room temperature, the composite exhibited a specific capacity up to 850 mA h g–1 in the initial cycle. Its specific capacity remained above 600 mA h g–1 after 50 cycles, about five times that of LiCoO2, and recovered partly after replacement of the anode with a fresh lithium sheet. The utilization of the electrochemically active sulfur was about 90 % assuming a complete reaction to the product, Li2S.  相似文献   

20.
Developing bifunctional efficient electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is in high demand for the development of overall water‐splitting devices. In particular, the electrocatalytic performance can be largely improved by designing positive nanoscale‐heterojunction with well‐tuned interfaces. Herein, a novel top‐down strategy is reported to construct the oxide/sulfide heterostructures (N‐NiMoO4/NiS2 nanowires/nanosheets) as a multisite HER/OER catalyst. Starting with the NiMoO4 nanowires, nitridation in a controlled manner enables activation of Ni sites in NiMoO4 and then yields oxide/sulfide heterojunction by directly vulcanizing the highly composition‐segregated N‐NiMoO4 nanowires. The abundant epitaxial heterogeneous interfaces at atomic‐level facilitate the electron transfer from N‐NiMoO4 to NiS2, which further cooperate synergistically toward both the hydrogen and oxygen generation in alkali solution. Furthermore, with N‐NiMoO4/NiS2 grown carbon fiber cloth as the engineering electrode, the assembled N‐NiMoO4/NiS2–N‐NiMoO4/NiS2 system can deliver a current density of 10 mA cm?2 with the cell voltage of 1.60 V in the water‐splitting reaction. This current density is 3.39 times higher than that of the Pt–Ir set (2.95 mA cm?2). The excellent catalytic performance offered of N‐NiMoO4/NiS2 nanowires/nanosheets presents a great example to demonstrate the significance of interface engineering in the field of electrocatalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号