首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface modification of indium tin oxide (ITO)‐coated substrates through the use of self‐assembled monolayers (SAMs) of molecules with permanent dipole moments has been used to control the anode work function and device performance in molecular solar cells based on a CuPc:C60 (CuPc: copper phthalocyanine) heterojunction. Use of SAMs increases both the short‐circuit current density (Jsc) and fill factor, increasing the power‐conversion efficiency by up to an order of magnitude. This improvement is attributed primarily to an enhanced interfacial charge transfer rate at the anode, due to both a decrease in the interfacial energy step between the anode work function and the highest occupied molecular orbital (HOMO) level of the organic layer, and a better compatibility of the SAM‐modified electrodes with the initial CuPc layers, which leads to a higher density of active sites for charge transfer. An additional factor may be the influence of increasing electric field at the heterojunction on the exciton‐dissociation efficiency. This is supported by calculations of the electric potential distribution for the structures. Work‐function modification has virtually no effect on the open‐circuit voltage (Voc), in accordance with the idea that Voc is controlled primarily by the energy levels of the donor and acceptor materials.  相似文献   

2.
A new approach to forming a gradient hole‐injection layer in polymer light‐emitting diodes (PLEDs) is demonstrated. Single spin‐coating of hole‐injecting conducting polymer compositions with a perfluorinated ionomer results in a work function gradient through the layer formed by self‐organization, which leads to remarkably efficient single‐layer PLEDs (ca. 21 cd A–1). The device lifetime is significantly improved (ca. 50 times) compared with the conventional hole‐injection layer, poly(3,4‐ethylenedioxythiophene)/poly(styrene sulfonate). These results are a good example for demonstrating that the shorter lifetime of PLEDs compared with small‐molecule‐based organic LEDs (SM‐OLEDs) is not mainly due to the inherent degradation of the polymeric emitter itself. Hence, the results open the way to further improvements of PLEDs for real applications to large‐area, high‐resolution, and full‐color flexible displays.  相似文献   

3.
Bipolar compounds (referred to in general as btza ) containing a benzo[1,2,5]thiadiazole core and peripheral diarylamines and/or 4‐tert‐butylphenyl moieties have been synthesized via palladium‐catalyzed cross‐coupling reactions of 4,7‐dibromobenzo[1,2,5]thiadiazole with appropriate stannyl compounds. These compounds are fluorescent and the emission color ranges from green to red. The fluorescence of the compounds originates from a charge‐transfer process and exhibits solvatochromism. These red‐light‐emitting materials are amorphous and devices of different configurations were fabricated: I) ITO/ btza /TPBI/Mg:Ag; II) ITO/ btza /Alq3/Mg:Ag; III) ITO/ btza /Mg:Ag (where ITO = indium tin oxide, TPBI = 1,3,5‐tris(N‐phenylbezimidazol‐2‐yl)benzene, and Alq3 = tris(8‐hydroxyquinoline)aluminum). The performance of some of the red‐light‐emitting devices appears to be very promising.  相似文献   

4.
Organic field‐effect transistors were fabricated with vapor‐deposited pentacene on aluminum oxide insulating layers. Several methods are used in order to extract the mobility and threshold voltage from the transfer characteristic of the devices. In all cases, the mobility is found to depend on the gate voltage. The first method consists of deriving the drain current as a function of gate voltage (transconductance), leading to the so‐called field‐effect mobility. In the second method, we assume a power‐law dependence of the mobility with gate voltage together with a constant contact resistance. The third method is the so‐called transfer line method, in which several devices with various channel length are used. It is shown that the mobility is significantly enhanced by modifying the aluminum oxide layer with carboxylic acid self‐assembled monolayers prior to pentacene deposition. The methods used to extract parameters yield threshold voltages with an absolute value of less than 2 V. It is also shown that there is a shift of the threshold voltage after modification of the aluminum oxide layer. These features seem to confirm the validity of the parameter‐extraction methods.  相似文献   

5.
We present a novel platinum porphyrin based phosphorescent dendrimer for use as a triplet harvesting dopant in organic light‐emitting diodes. Two types of dendritic host materials are used. Through the choice of a common branching architecture around the emissive chromophore unit of both guest and host materials, we are able to achieve excellent miscibility. The relative contribution of guest to host emission is found to depend strongly on the energy level offsets of the two blend materials, indicating strong trapping processes. Under pulsed operation, we observe a striking dependence of the emission spectrum on pulse period, independent of the host material used. This spectral modification is attributed to the quenching of triplet excitations at high excitation densities. We find excellent agreement between our measured data and a model based on bimolecular recombination.  相似文献   

6.
In this paper we demonstrate that multilayer structures with modulated bandgaps can be used for efficient energy transfer and carrier confinement inside a nanostructured film of a light‐emitting polymer. The films were produced with the layer‐by‐layer technique (LbL) with a poly(p‐phenylene vinylene) (PPV) precursor and a long chain dodecylbenzenesulfonate ion (DBS). DBS is incorporated selectively into the precursor chain, and with a rapid, low temperature conversion process (100 °C) superstructures with variable HOMO–LUMO gap could be formed along the deposition direction by changing the DBS concentration. Structures with different stair‐type energy modulations were produced, which are thermally stable and reproducible, as demonstrated by UV‐VIS. absorption measurements. Energy differences of up to 0.5 eV between the lowest and highest conjugated layers inside the stair structure could be achieved, which was sufficient to guide the excitation over long distances to the lower bandgap layer.  相似文献   

7.
We demonstrate enhanced hole injection and lowered driving voltage in vacuum‐deposited organic light‐emitting diodes (OLEDs) with a hole‐transport layer using the starburst amine 4,4′,4″‐tris(N,N‐diphenyl‐amino)triphenylamine (TDATA) p‐doped with a very strong acceptor, tetrafluoro‐tetracyano‐quinodimethane (F4‐TCNQ) by controlled coevaporation. The doping leads to high conductivity of doped TDATA layers and a high density of equilibrium charge carriers, which facilitates hole injection and transport. Moreover, multilayer OLEDs consisting of double hole‐transport layers of thick p‐doped TDATA and a thin triphenyl‐diamine (TPD) interlayer exhibit very low operating voltages.  相似文献   

8.
Herein we report on a new type of dip‐pen nanolithography (DPN), which utilizes an interfacial organic reaction—the amide‐coupling reaction—between chemically activated surfaces and amine ink molecules transferred from an atomic force microscopy tip. As a representative of the chemically activated surfaces that could react with amine compounds, we formed a self‐assembled monolayer terminating in interchain carboxylic anhydride (ICA) groups on gold, and generated chemically derived nanopatterns using alkylamines as ink molecules. Amine inks showed diffusive behavior similar to thiol inks on gold in conventional DPN, and the pattern sizes were controlled by changing the tip dwell times. In addition, nanopatterns of hydrolyzed ICAs were generated by taking advantage of the participation of the water meniscus in the DPN process and the chemical nature of the ICAs.  相似文献   

9.
The versatility of light‐emitting conjugated polymers in terms of optoelectronic properties is enormous, but tailoring of other essential properties has been relatively limited. In other fields such a problem would be rectified using material formulations. However, the need to maintain high optoelectronic compatibility between components has hampered such development. In this paper, careful design of electronically compatible materials is demonstrated. Additive molecules that are compatible with a family of luminescent polymers are presented, and their performance in a light‐emitting diode configuration is demonstrated. This formulation is aimed to adjust the glass‐transition temperature, maintain/improve film‐forming ability, and introduce a crosslinking functionality. It is found that, by using electronic formulations, a robust procedure is obtained that could be used to produce waveguide lasers or full‐color displays. The patterning ability is shown via the construction of a single pixel that is half green and half orange.  相似文献   

10.
Controlling charge doping in organic semiconductors represents one of the key challenges in organic electronics that needs to be solved in order to optimize charge transport in organic devices. Charge transfer or charge separation at the molecule/substrate interface can be used to dope the semiconductor (substrate) surface or the active molecular layers close to the interface, and this process is referred to as surface‐transfer doping. By modifying the Au(111) substrate with self‐assembled monolayers (SAMs) of aromatic thiols with strong electron‐withdrawing trifluoromethyl (CF3) functional groups, significant electron transfer from the active organic layers (copper(II) phthalocyanine; CuPc) to the underlying CF3‐SAM near the interface is clearly observed by synchrotron photoemission spectroscopy. The electron transfer at the CuPc/CF3‐SAM interface leads to an electron accumulation layer in CF3‐SAM and a depletion layer in CuPc, thereby achieving p‐type doping of the CuPc layers close to the interface. In contrast, methyl (CH3)‐terminated SAMs do not display significant electron transfer behavior at the CuPc/CH3‐SAM interface, suggesting that these effects can be generalized to other organic‐SAM interfaces. Angular‐dependent near‐edge X‐ray absorption fine structure (NEXAFS) measurements reveal that CuPc molecules adopt a standing‐up configuration on both SAMs, suggesting that interface charge transfer has a negligible effect on the molecular orientation of CuPc on various SAMs.  相似文献   

11.
12.
Conventional photolithography uses rigid photomasks of fused quartz and high‐purity silica glass plates covered with patterned microstructures of an opaque material. We introduce new, transparent, elastomeric molds (or stamps) of poly(dimethylsiloxane) (PDMS) that can be employed as photomasks to produce the same resist pattern as the pattern of the recessed (or non‐contact) regions of the stamps, in contrast to other reports in the literature[1] of using PDMS masks to generate edge patterns. The exposure dose of the non‐contact regions with the photoresist through the PDMS is lower than that of the contact regions. Therefore, we employ a difference in the effective exposure dose between the contact and the non‐contact regions through the PDMS stamp to generate the same pattern as the PDMS photomask. The photomasking capability of the PDMS stamps, which is similar to rigid photomasks in conventional photolithography, widens the application boundaries of soft‐contact optical lithography and makes the photolithography process and equipment very simple. This soft‐contact optical lithography process can be widely used to perform photolithography on flexible substrates, avoiding metal or resist cracks, as it uses soft, conformable, intimate contact with the photoresist without any external pressure. To this end, we demonstrate soft‐contact optical lithography on a gold‐coated PDMS substrate and utilized the patterned Au/PDMS substrate with feature sizes into the nanometer regime as a top electrode in organic light‐emitting diodes that are formed by soft‐contact lamination.  相似文献   

13.
The strong tendency of organic nanoparticles to rapidly self‐assemble into highly aligned superlattices at room temperature when solution‐cast from dispersions or spray‐coated directly onto various substrates is described. The nanoparticle dispersions are stable for years. The novel precipitation process used is believed to result in molecular distances and alignments in the nanoparticles that are not normally possible. Functional organic light‐emitting diodes (OLEDs)—which have the same host–dopant emissive‐material composition—with process‐tunable electroluminescence have been built with these nanoparticles, indicating the presence of novel nanostructures. For example, only changing the conditions of the precipitation process changes the OLED emission from green light to yellow.  相似文献   

14.
The performance of organic electronic devices is often limited by injection. In this paper, improvement of hole injection in organic electronic devices by conditioning of the interface between the hole‐conducting layer (buffer layer) and the active organic semiconductor layer is demonstrated. The conditioning is performed by spin‐coating poly(9,9‐dioctyl‐fluorene‐coN‐ (4‐butylphenyl)‐diphenylamine) (TFB) on top of the poly(3,4‐ethylene dioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) buffer layer, followed by an organic solvent wash, which results in a TFB residue on the surface of the PEDOT:PSS. Changes in the hole‐injection energy barriers, bulk charge‐transport properties, and current–voltage characteristics observed in a representative PFO‐based (PFO: poly(9,9‐dioctylfluorene)) diode suggest that conditioning of PEDOT:PSS surface with TFB creates a stepped electronic profile that dramatically improves the hole‐injection properties of organic electronic devices.  相似文献   

15.
Controlling contact resistance in organic field‐effect transistors (OFETs) is one of the major hurdles to achieve transistor scaling and dimensional reduction. In particular in the context of ambipolar and/or light‐emitting OFETs it is a difficult challenge to obtain efficient injection of both electrons and holes from one injecting electrode such as gold since organic semiconductors have intrinsically large band gaps resulting in significant injection barrier heights for at least one type of carrier. Here, systematic control of electron and hole contact resistance in poly(9,9‐di‐n‐octylfluorene‐alt‐benzothiadiazole) ambipolar OFETs using thiol‐based self‐assembled monolayers (SAMs) is demonstrated. In contrast to common believe, it is found that for a certain SAM the injection of both electrons and holes can be improved. This simultaneous enhancement of electron and hole injection cannot be explained by SAM‐induced work‐function modifications because the surface dipole induced by the SAM on the metal surface lowers the injection barrier only for one type of carrier, but increases it for the other. These investigations reveal that other key factors also affect contact resistance, including i) interfacial tunneling through the SAM, ii) SAM‐induced modifications of interface morphology, and iii) the interface electronic structure. Of particular importance for top‐gate OFET geometry is iv) the active polymer layer thickness that dominates the electrode/polymer contact resistance. Therefore, a consistent explanation of how SAM electrode modification is able to improve both electron and hole injection in ambipolar OFETs requires considering all mentioned factors.  相似文献   

16.
Self‐assembled monolayers (SAMs) are molecular assemblies that spontaneously form on an appropriate substrate dipped into a solution of an active surfactant in an organic solvent. Organic field‐effect transistors are described, built on an SAM made of bifunctional molecules comprising a short alkyl chain linked to an oligothiophene moiety that acts as the active semiconductor. The SAM is deposited on a thin oxide layer (alumina or silica) that serves as a gate insulator. Platinum–titanium source and drain electrodes (either top‐ or bottom‐contact configuration) are patterned by using electron‐beam (e‐beam) lithography, with a channel length ranging between 20 and 1000 nm. In most cases, ill‐defined current–voltage (I–V) curves are recorded, attributed to a poor electrical contact between platinum and the oligothiophene moiety. However, a few devices offer well‐defined curves with a clear saturation, thus allowing an estimation of the mobility: 0.0035 cm2 V–1 s–1 for quaterthiophene and 8 × 10–4 cm2 V–1 s–1 for terthiophene. In the first case, the on–off ratio reaches 1800 at a gate voltage of –2 V. Interestingly, the device operates at room temperature and very low bias, which may open the way to applications where low consumption is required.  相似文献   

17.
Detailed studies on the effect of placing a thin (10 nm) solution‐processable interlayer between a light‐emitting polymer (LEP) layer and a poly(3,4‐ethylenedioxythiophene)/poly(styrenesulfonic)‐acid‐coated indium tin oxide anode is reported; particular attention is directed at the effects on the hole injection into three different LEPs. All three different interlayer polymers have low ionization potentials, which are similar to those of the LEPs, so the observed changes in hole injection are not due to variations in injection barrier height. It is instead shown that changes are due to variations in hole trapping at the injecting interface, which is responsible for varying the hole current by up to two orders of magnitude. Transient measurements show the presence of very fast interfacial traps, which fill the moment charge is injected from the anode. These can be considered as injection pathway dead‐ends, effectively reducing the active contact surface area. This is followed by slower interfacial traps, which fill on timescales longer than the carrier transit time across the device, further reducing the total current. The interlayers may increase or decrease the trap densities depending on the particular LEP involved, indicating the dominant role of interfacial chain morphology in injection. Penetration of the interlayer into the LEP layer can also occur, resulting in additional changes in the bulk LEP transport properties.  相似文献   

18.
This article reports the main origin of the low luminescent efficiency in hole‐dominant polymer light‐emitting diodes by controlling the hole injection and by chemically modifying the cathode by molecular monolayers. Since molecular modification of the top electrode is impossible when one deposits the electrode using a vacuum deposition method, this study was performed using a soft contact lamination technique to form electrical contacts on top of the emissive layer. The top electrode was chemically modified with an alkane thiol self‐assembled monolayer (SAM) to act as an interfacial spacer layer between the emitting layer and the cathode. Herein, it is reported that, contrary to common belief, a high device quantum efficiency can be achieved from the dominantly hole‐transporting device with a high work‐function cathode (like Au) by facilitating more hole injection from the anode in the device with low population of exciton quenching channels near the cathode.  相似文献   

19.
Novel blue‐light‐emitting materials, 9,10‐bis(1,2‐diphenyl styryl)anthracene (BDSA) and 9,10‐bis(4′‐triphenylsilylphenyl)anthracene (BTSA), which are composed of an anthracene molecule as the main unit and a rigid and bulky 1,2‐diphenylstyryl or triphenylsilylphenyl side unit, have been designed and synthesized. Theoretical calculations on the three‐dimensional structures of BDSA and BTSA show that they have a non‐coplanar structure and inhibited intermolecular interactions, resulting in a high luminescence efficiency and good color purity. By incorporating these new, non‐doped, blue‐light‐emitting materials into a multilayer device structure, it is possible to achieve luminance efficiencies of 1.43 lm W–1 (3.0 cd A–1 at 6.6 V) for BDSA and 0.61 lm W–1 (1.3 cd A–1 at 6.7 V) for BTSA at 10 mA cm–2. The electroluminescence spectrum of the indium tin oxide (ITO)/copper phthalocyanine (CuPc)/1,4‐bis[(1‐naphthylphenyl)‐amino]biphenyl (α‐NPD)/BDSA/tris(9‐hydroxyquinolinato)aluminum (Alq3)/LiF/Al device shows a narrow emission band with a full width at half maximum (FWHM) of 55 nm and a λmax = 453 nm. The FWHM of the ITO/CuPc/α‐NPD/BTSA/Alq3/LiF/Al device is 53 nm, with a λmax = 436 nm. Regarding color, the devices showed highly pure blue emission ((x,y) = (0.15,0.09) for BTSA, (x,y) = (0.14,0.10) for BDSA) at 10 mA cm–2 in Commission Internationale de l'Eclairage (CIE) chromaticity coordinates.  相似文献   

20.
We describe the preparation of a dendrimer that is solution‐processible and contains 2‐ethylhexyloxy surface groups, biphenyl‐based dendrons, and a fac‐tris[2‐(2,4‐difluorophenyl)pyridyl]iridium(III ) core. The homoleptic complex is highly luminescent and the color of emission is similar to the heteroleptic iridium(III ) complex, bis[2‐(2,4‐difluorophenyl)pyridyl]picolinate iridium(III ) (FIrpic). To avoid the change in emission color that would arise from attaching a conjugated dendron to the ligand, the conjugation between the dendron and the ligand is decoupled by separating them with an ethane linkage. Bilayer devices containing a light‐emitting layer comprised of a 30 wt.‐% blend of the dendrimer in 1,3‐bis(N‐carbazolyl)benzene (mCP) and a 1,3,5‐tris(2‐N‐phenylbenzimidazolyl)benzene electron‐transport layer have external quantum and power efficiencies, respectively, of 10.4 % and 11 lm W–1 at 100 cd m–2 and 6.4 V. These efficiencies are higher than those reported for more complex device structures prepared via evaporation that contain FIrpic blended with mCP as the emitting layer, showing the advantage of using a dendritic structure to control processing and intermolecular interactions. The external quantum efficiency of 10.4 % corresponds to the maximum achievable efficiency based on the photoluminescence quantum yield of the emissive film and the standard out‐coupling of light from the device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号