首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We report photovoltaic devices consisting of patterned TiO2, porphyrin dyes, and layer‐by‐layer (LBL) polyelectrolyte multilayer/oligoethylene glycol dicarboxylic acid (OEGDA) composite films. A composite polyelectrolyte LBL/OEGDA film was fabricated by formation of an alternating multilayer of linear polyethyleneimine (LPEI) and polyacrylic acid (PAA), followed by immersion of the LBL film into an OEGDA aqueous solution. The ionic conductivity attained in this LBL LPEI/PAA and OEGDA composite film was approximately 10–5 S cm–1 at room temperature and humidity. Investigations of dye‐sensitized photovoltaic devices constructed with the LBL (LPEI/PAA)/OEGDA composite films, TiO2, and four types of porphyrin dyes resulted in optimization of the dye molecule and its orientation at the interface with the ionically conductive composite. The photocurrent value of photovoltaic devices constructed with the composite LBL/OEGDA film from illumination of a xenon white light source exhibited a nearly 1.5 times enhancement over the device without OEGDA. This enhancement of the photocurrent was due to the high room‐temperature ionic conductivity of the multilayer composite film. Further marked improvements of the photovoltaic performance were achieved by patterning the TiO2 electrode using polymer stamping as a template for TiO2 deposition. The device with patterned TiO2 electrodes exhibited almost 10 times larger conversion efficiencies than a similar device without patterning.  相似文献   

2.
Polymer‐dispersed liquid crystals (PDLCs) are liquid‐crystal dispersions within a polymer matrix. These films can be changed from an opaque to a transparent state by applying a suitable alternating‐current electric field. PDLCs have attracted the interest of researchers for their applications as light shutters, smart windows, and active displays. For such applications, electrochromic devices, which change color as a result of electrochemical reactions, have also become a recent focus of research. Herein, we report our preliminary results on bifunctional devices based on PDLCs that host electrochromic guest molecules. Such devices allow both an independent and fast switching from a scattering opaque state to a transmissive transparent state owing to liquid‐crystal reorientation and a color change from white (pale yellow) to dark blue, due to either oxidation or reduction of the electrochromic molecules.  相似文献   

3.
In this work, a facile method to deposit fast growing electrochromic multilayer films with enhanced electrochemical properties using layer‐by‐layer (LbL) self‐assembly of complex polyelectrolyte is demonstrated. Two linear polymers, poly(acrylic acid) (PAA) and polyethylenimine (PEI), are used to formulate stable complexes under specific pH to prepare polyaniline (PANI)/PAA‐PEI multilayer films via LbL deposition. By introducing polymeric complexes as building blocks, [PANI/PAA‐PEI]n films grow much faster compared with [PANI/PAA]n films, which are deposited under the same condition. Unlike the compact [PANI/PAA]n films, [PANI/PAA‐PEI]n films exhibit porous structure that is beneficial to the electrochemical process and leads to improved electrochromic properties. An enhanced optical modulation of 30% is achieved with [PANI/PAA‐PEI]30 films at 630 nm compared with the lower optical modulation of 11% measured from [PANI/PAA]30 films. The switching time of [PANI/PAA‐PEI]30 films is only half of that of [PANI/PAA]30 films, which indicates a faster redox process. Utilizing polyelectrolyte complexes as building blocks is a promising approach to prepare fast growing LbL films for high performance electrochemical device applications.  相似文献   

4.
In this paper, we report an alternative simple method to shift the electroactivity of polyaniline (PANI) films to neutral pH conditions by forming multilayer assemblies with poly(anions) using the layer‐by‐layer (LBL) deposition method. A series of self‐assembled PANI multilayer films with poly(anions), such as sulfonated polyaniline (SPANI), poly(acrylic acid) (PAA), poly(vinyl sulfonate) (PVS), and poly(styrene sulfonate) (PSS), were prepared by the LBL method. Their electrochemical behavior and catalytic ability for the oxidation of β‐nicotinamide adenine dinucleotide (NADH) in neutral solution were investigated by electrochemistry (EC) combined with surface plasmon spectroscopy (SPS) and the quartz crystal microbalance (QCM) technique. Results indicated that all the films showed very good stability, reversibility, and electroactivity in neutral solution. All the multilayer films can electrocatalyze the oxidation of NADH, with the catalytic ability of PANI/SPANI being higher than that of the other assemblies under the same conditions. The catalytic abilities of the films with the same thickness prepared by the copolymerization method and the LBL method were also compared.  相似文献   

5.
Highly stable graphene oxide (GO)‐based multilayered ultrathin films can be covalently immobilized on solid supports through a covalent‐based method. It is demonstrated that when (3‐aminopropyl) trimethoxysilane (APTMS), which works as a covalent cross‐linking agent, and GO nanosheets are assembled in an layer‐by‐layer (LBL) manner, GO nanosheets can be covalently grafted on the solid substrate successfully to produce uniform multilayered (APTMS/GO)N films over large‐area surfaces. Compared with conventional noncovalent LBL films constructed by electrostatic interactions, those assembled using this covalent‐based method display much higher stability and reproducibility. Upon thermal annealing‐induced reduction of the covalent (APTMS/GO)N films, the obtained reduced GO (RGO) films, (APTMS/RGO)N, preserve their basic structural characteristics. It is also shown that the as‐prepared covalent (APTMS/RGO)N multilayer films can be used as highly stable source/drain electrodes in organic field‐effect transistors (OFETs). When the number of bilayers of the (APTMS/RGO)N film exceeds 2 (ca. 2.7 nm), the OFETs based on (APTMS/RGO)N electrodes display much better electrical performance than devices based on 40 nm Au electrodes. The covalent protocol proposed may open up new opportunities for the construction of graphene‐based ultrathin films with excellent stability and reproducibility, which are desired for practical applications that require withstanding of multistep post‐production processes.  相似文献   

6.
Metal‐organic frameworks (MOFs) with the “nbo” topology constitute a diverse suite of more than 100 nanoporous materials, but their use in applications such as chemical sensing and membranes is inhibited by a lack of methods for growing them as thin films. Here, layer‐by‐layer (LBL) and solvothermal growth of “nbo” films is demonstrated and it is established for the first time that interlinker steric hindrance is a critical factor in determining the effectiveness of the LBL method. Film growth is demonstrated for three “nbo” MOFs: NOTT‐100 and NOTT‐101, which have the R‐3m space group and are deposited by the LBL method, and PCN‐14, with the R‐3c space group, which is deposited by a solvothermal approach. Continuous and dense films of NOTT‐100 and NOTT‐101 are obtained and LBL growth is verified by observing deposition with a quartz crystal microbalance technique, which also yields the temperature dependence. Oxygen plasma treatment is found to be a useful tool for promoting the MOF film growth under solvothermal conditions. Effective mechanical coupling of these films to the substrate is demonstrated by growing them on surface acoustic wave sensors, which respond reversibly to vapors of water, acetone, and n‐hexane.  相似文献   

7.
Titania nanoshells with an external diameter of 10–30 nm and a wall thickness of 3–5 nm were prepared by dissolving the silver cores of Ag@TiO2 nanoparticles in a concentrated solution of ammonium hydroxide. The nanoshells were assembled layer‐by‐layer (LBL), with negatively charged poly(acrylic acid) (PAA) to produce coatings with a network of voids and channels in the interior of the film. The diameter of the channels in the titania shells was comparable to the thickness of the electrical double layer in porous matter (0.3–30 nm). The prepared nanoparticulate films demonstrated strong ion‐sieving properties due to the exclusion of some ions from the diffuse region of the electrical double layer. The permeation of ions could be tuned effectively by the pH and ionic strength of a solution between “open” and “closed” states. The ion‐separation effect was utilized for the selective determination of one of the most important neurotransmitters, dopamine, on a background of ascorbic acid. Under physiological conditions, the negative charge on the surface of TiO2 facilitated the permeation of positively charged dopamine through the LBL film to the electrode, preventing the access of the negatively charged ascorbic acid. The deposition of the nanoshell/polyelectrolyte film resulted in a significant improvement to the selectivity of dopamine determination. The prepared nanoshell films were also found to be compatible with nervous tissue secreting dopamine. Although the obtained data demonstrated the potential of TiO2 LBL films for implantable biomedical devices for nerve tissue monitoring, the problem of electrode poisoning by the by‐products of dopamine reduction has yet to be resolved.  相似文献   

8.
Organic cathode materials as economical and environment‐friendly alternatives to inorganic cathode materials have attracted comprehensive attention in potassium‐ion batteries (KIBs). Nonetheless, active material dissolution and mismatched electrolytes result in insufficient cycle life that definitely hinders their practical applications. Here, a significantly improved cycle life of 1000 cycles (80% capacity retention) on a practically insoluble organic cathode material, anthraquinone‐1,5‐disulfonic acid sodium salt, is realized, in KIBs through a solid‐electrolyte interphase (SEI) regulation strategy by ether‐based electrolytes. Such an excellent performance is attributed to the robust SEI film and fast reaction kinetics. More importantly, the ether‐electrolyte‐derived SEI film has a protective inorganic‐rich inner layer arising from the prior decomposition of potassium salts to solvents, as revealed by X‐ray photoelectron spectroscopy analysis and computational studies on molecular orbital energy levels. The findings shed light on the critical roles of electrolytes and the corresponding SEI films in enhancing performance of organic cathodes in KIBs.  相似文献   

9.
The alternate layer‐by‐layer (LBL) deposition of polycations and polyanions for the build up of multilayered polyelectrolyte films is an original approach that allows the preparation of tunable, biologically active surfaces. The resulting supramolecular nanoarchitectures can be functionalized with drugs, peptides, and proteins, or DNA molecules that are able to transfect cells in vitro. We monitor, for the first time, the embedding of a bioactive adenoviral (Ad) vector in multilayered polyelectrolyte films. Ad efficiently adsorbs on poly(L ‐lysine)–poly(L ‐glutamic acid) (PLL–PGA), PLL–HA (HA: hyaluronan), poly(allylamin hydrochloride)–poly(sodium‐4‐styrenesulfonate) (PAH–PSS), and CHI–HA (CHI: chitosan) films; it preserves its transduction capacity (which can reach 95 %) for a large number of cell types, and also allows vector uptake into receptor‐deficient cells, thus abrogating the restricted tropism of Ad.  相似文献   

10.
A novel type of all‐natural, biocompatible, and very robust nanoscale free‐standing biohybrids are reported. They are obtained by integrating a silk fibroin matrix with functional inorganic nanoplatelets using a spin‐assisted layer‐by‐layer assembly. The organized assembly of the silk fibroin with clay (montmorillonite) nanosheets results in highly transparent nanoscale films with significantly enhanced mechanical properties, including strength, toughness, and elastic modulus, as compared to those for the pristine silk nanomaterials. Moreover, replacing clay nanoplatelets with a highly reflective Langmuir monolayer of densely packed silver nanoplates causes a similar enhancement of the mechanical properties, but in contrast to the materials above, highly reflective, mirror‐like, nanoscale flexible films are created. This strategy offers a new perspective for the fabrication of robust all‐natural flexible nanocomposites with exceptional mechanical properties important for biomedical applications, such as reinforced tissue engineering. On the other hand, the ability to convert silk‐based nanoscale films into mirror‐like biocompatible flexible films can be intriguing for prospective photonics and optical exploitation of these nanobiohybrids.  相似文献   

11.
Graphene‐based organic nanocomposites have ascended as promising candidates for thermoelectric energy conversion. In order to adopt existing scalable printing methods for developing thermostable graphene‐based thermoelectric devices, optimization of both the material ink and the thermoelectric properties of the resulting films are required. Here, inkjet‐printed large‐area flexible graphene thin films with outstanding thermoelectric properties are reported. The thermal and electronic transport properties of the films reveal the so‐called phonon‐glass electron‐crystal character (i.e., electrical transport behavior akin to that of few‐layer graphene flakes with quenched thermal transport arising from the disordered nanoporous structure). As a result, the all‐graphene films show a room‐temperature thermoelectric power factor of 18.7 µW m?1 K?2, representing over a threefold improvement to previous solution‐processed all‐graphene structures. The demonstration of inkjet‐printed thermoelectric devices underscores the potential for future flexible, scalable, and low‐cost thermoelectric applications, such as harvesting energy from body heat in wearable applications.  相似文献   

12.
A short survey of technological aspects of electrochromism with various electroactive species is given. Different approaches with inorganic and organic materials have been pursued in the past. So far widespread usage of this technology for large area applications has not been achieved. Nevertheless one major technical product, self‐darkening rear‐view mirrors for cars, is already well established. This article reviews some research results on electroactive polythiophenes, especially poly(3,4‐alkylenedioxythiophenes). Some promising results with the commercially available electrically conducting polymer Baytron P (PEDT/PSS) are presented. It is demonstrated that an all solid‐state electrochromic multilayer assembly based on a polymeric electrochromic material might be close to technical realization. The coating of large area substrates with aqueous poly(3,4‐ethylenedioxythiophene)‐poly(styrenesulfonate) dispersion can be a way to an economically viable product.  相似文献   

13.
Quantum dots (QDs) luminescent films have broad applications in optoelectronics, solid‐state light‐emitting diodes (LEDs), and optical devices. This work reports the fabrication of multicolor‐light‐emitting ultrathin films (UTFs) with 2D architecture based on CdTe QDs and MgAl layered double hydroxide (LDH) nanosheets via the layer‐by‐layer deposition technique. The hybrid UTFs possess periodic layered structure, which is verified by X‐ray diffraction. Tunable light emission in the red‐green region is obtained by changing the particle size of QDs (CdTe‐535 QDs and CdTe‐635 QDs with green and red emision respectively), assembly cycle number, and sequence. Moreover, energy transfer between CdTe‐535 QDs and CdTe‐635 QDs occurs based on the fluorescence resonance energy transfer (FRET), which greatly enhances the fluorescence efficiency of CdTe‐635 QDs. In addition, a theoretical study based on the Förster theory and molecular dynamics (MD) simulations demonstrates that CdTe QDs/LDH UTFs exhibit superior capability of energy transfer owing to the ordered dispersion of QDs in the 2D LDH matrix, which agrees well with the experimental results. Therefore, this provides a facile approach for the design and fabrication of inorganic‐inorganic luminescent UTFs with largely enhanced luminescence efficiency as well as stability, which can be potentially applied in multicolor optical and optoelectronic devices.  相似文献   

14.
Molecular layer deposition (MLD) is a useful technique for fabricating hybrid organic‐inorganic thin films. MLD allows for the growth of ultrathin and conformal films using sequential, self‐limiting reactions. This article focuses on the MLD of hybrid organic‐inorganic films grown using metal precursors and various organic alcohols that yield metal alkoxide films. This family of metal alkoxides can be described as “metalcones”. Many metalcones are possible, such as the “alucones” and “zincones” based on the reaction of trimethylaluminum and diethylzinc, respectively, with various organic diols such as ethylene glycol. Alloys of the various metalcones with their parent metal oxide atomic layer deposition (ALD) films can also be fabricated that have an organic‐inorganic composition that can be adjusted by controlling the relative number of ALD and MLD cycles. These metalcone alloys have tunable chemical, optical, mechanical, and electrical properties that may be useful for designing various functional films. The metalcone hybrid organic‐inorganic materials offer a new tool set for engineering thin film properties.  相似文献   

15.
Self‐assembly of different sized colloidal particles into multicomponent crystals results in novel material properties compared to the properties of the individual components alone. The formation of binary and, for the first time, ternary colloidal crystals through a simple and inexpensive confined‐area evaporation‐induced layer‐by‐layer (LBL) assembly method is reported. The proposed method produces high quality multicomponent colloidal crystal films over a broad range of particle size‐ratios and large surface areas (cm2) from silica/polystyrene colloidal suspensions of low concentration. By adjusting the size‐ratio and concentration of the colloidal particles, complex crystals of tunable stoichiometries are fabricated and their structural characteristics are further confirmed with reported crystal analogues. In addition, complex structures form as a result of the interplay of the template layer effect, the surface forces exerted by the meniscus of the drying liquid, the space filling principle, and entropic forces. Thus, this LBL approach is a versatile way to grow colloidal crystals with binary, ternary, or more complex structures.  相似文献   

16.
Although significant progress has been made in the development of vacuum‐deposited small‐molecule organic light‐emitting diodes (OLEDs), one of the most desired research goals is still to produce flexible displays by low‐cost solution processing. The development of solution‐processed OLEDs based on small molecules could potentially be a good approach but no intensive studies on this topic have been conducted so far. To fabricate high‐performance devices based on solution‐processed small molecules, the underlying nature of the produced films and devices must be elucidated. Here, the distinctive characteristics of solution‐processed small‐molecule films and devices compared to their vacuum‐deposited counterparts are reported. Solution‐processed blue OLEDs show a very high luminous efficiency (of about 8.9 cd A–1) despite their simplified structure. A better hole‐blocking and electron‐transporting layer is essential for achieving high‐efficiency solution‐processed devices because the solution‐processed emitting layer gives the devices a better hole‐transporting capability and more electron traps than the vacuum‐deposited layer. It is found that the lower density of the solution‐processed films (compared to the vacuum‐deposited films) can be a major cause for the short lifetimes observed for the corresponding devices.  相似文献   

17.
Mixtures of liquid‐crystalline di‐oxetanes and mono‐oxetanes are made for the purpose of making birefringent films by photopolymerization. The composition of a di‐oxetane mixture that forms spin‐coated films of planarly aligned nematic monomers is reported. These films are photopolymerized in air. The molecular order of the monomers can be changed on the microscale to form thin films with alternating birefringent and isotropic parts by using a combination of photopolymerization and heating. The interface observed between the birefringent and isotropic 10 μm × 10 μm domains is very sharp and the films show hardly any surface corrugation. In addition, the polymerized films are thermally stable, making them very suitable for use as patterned thin‐film retarders in high‐performance transflective liquid‐crystal displays (LCDs) which satisfy customer demand for displays that are brighter and thinner and that deliver better optical performance than conventional LCDs with an external non‐patterned retarder.  相似文献   

18.
All‐organic active matrix addressed displays based on electrochemical smart pixels made on flexible substrates are reported. Each individual smart pixel device combines an electrochemical transistor with an electrochromic display cell, thus resulting in a low‐voltage operating and robust display technology. Poly(3,4‐ethylenedioxythiophene) (PEDOT) doped with poly(styrenesulfonate) (PSS) served as the active material in the electrochemical smart pixels, as well as the conducting lines, of the monolithically integrated active‐matrix display. Different active‐matrix display addressing schemes have been investigated and a matrix display fill factor of 65 % was reached. This is achieved by combining a three‐terminal electrochemical transistor with an electrochromic display cell architecture, in which an additional layer of PEDOT:PSS was placed on top of the display cell counter electrode. In addition, we have evaluated different kinds of electrochromic polymer materials aiming at reaching a high color switch contrast. This work has been carried out in the light of achieving a robust display technology that is easily manufactured using a standard label printing press, which forced us to use the fewest different materials as well as avoiding exotic and complex device architectures. Together, this yields a manufacturing process of only five discrete patterning steps, which in turn promise for that the active matrix addressed displays can be manufactured on paper or plastic substrates in a roll‐to‐roll production procedure.  相似文献   

19.
Safety issues remain a major obstacle toward large‐scale applications of high‐energy lithium‐ion batteries. Embedding thermo‐responsive polymer switching materials (TRPS) into batteries is a potential strategy to prevent thermal runaway, which is a major cause of battery failures. Here, thin, flexible, highly responsive polymer nanocomposites enabled by bio‐inspired nanospiky metal (Ni) particles are reported. These unique Ni particles are synthesized by a simple aqueous reaction at gram‐scale with controlled surface morphology and composition to optimize electrical properties of the nanocomposites. The Ni particles provide TRPS films with a high room‐temperature conductivity of up to 300 S cm?1. Such TRPS composite films also have a high rate (<1 s) of resistance switching within a narrow temperature range, good reversibility upon on/off switching, and a tunable switching temperature (Ts; 75 to 170 °C) that can be achieved by tailing their compositions. The small size (≈500 nm) of Ni particles enables ready fabrication of thin and flexible TPRS films with thickness approaching 5 µm or less. These features suggest the great potential of using this new type of responsive polymer composite for more effective battery thermal regulation without sacrificing cell performance.  相似文献   

20.
Among the challenges in nanomedicine, engineering nanomaterials able to combine imaging and multitherapies is hugely needed to address issues of a personalized treatment. In that context, a novel class of drug releasing and remotely activated nanocomposites based on carbon‐based materials coated with mesoporous silica (MS) and loaded with an outstanding level of the antitumoral drug doxorubicin (DOX) is designed. First, carbon nanotubes (CNTs) and graphene sheets (called “few‐layer graphene” FLG) are processed to afford a distribution size that is more suitable for nanomedicine applications. Then, the controlled coating of MS shells having a thickness tailored with the sol–gel parameters (amount of precursor, sol–gel time) around the sliced CNTs and exfoliated FLGs is reported. Furthermore, the drug loading in such mesoporous nanocomposites is investigated and the surface modification with an aminopropyltriethoxysilane (APTS) coating leading to a controlled polysiloxane layer provides an ultrahigh payload of DOX (up to several folds the mass of the initial composites). Such new CNT‐based nanocomposites are demonstrated to release DOX at low acidic pH, high temperature (T), and remotely when they are excited by near infrared (NIR) light. Such nanoconstructs may find applications as components of innovative biomedical scaffolds for phototherapy combined with drug delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号