首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with the problem of robust stability and robust stabilization for uncertain continuous singular systems with multiple time‐varying delays. The parametric uncertainty is assumed to be norm bounded. The purpose of the robust stability problem is to give conditions such that the uncertain singular system is regular, impulse free, and stable for all admissible uncertainties. The purpose of the robust stabilization problem is to design a feedback control law such that the resulting closed‐loop system is robustly stable. This problem is solved via generalized quadratic stability approach. A strict linear matrix inequality (LMI) design approach is developed. Finally, a numerical example is provided to demonstrate the application of the proposed method.  相似文献   

2.
The problem of delay‐dependent robust stabilization for uncertain singular discrete‐time systems with Markovian jumping parameters and time‐varying delay is investigated. In terms of free‐weighting‐matrix approach and linear matrix inequalities, a delay‐dependent condition is presented to ensure a singular discrete‐time system to be regular, causal and stochastically stable based on which the stability analysis and robust stabilization problem are studied. An explicit expression for the desired state‐feedback controller is also given. Some numerical examples are provided to demonstrate the effectiveness of the proposed approach. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The problem of the delay‐dependant robust stability and stabilization is dealt with for a class of Lur'e singular system with state time‐delays in this paper. The new concept of generalized robust quadratic stability and generalized robust quadratic stabilization is presented. Furthermore, the sufficient condition of the robust stability and stabilization is also proposed based on linear matrix inequalities. The synthesis problem addressed is to design a memoryless state feedback control law such that the resulting closed‐loop system is regular, impulse free and asymptotically stable for all admissible uncertainties. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

4.
In this note, we deal with the exponential stability and stabilization problems for quadratic discrete‐time systems with time delay. By using the quadratic Lyapunov function and a so called ‘Finsler's lemma', delay‐independent sufficient conditions for local stability and stabilization for quadratic discrete‐time systems with time delay are derived in terms of linear matrix inequalities (LMIs). Based on these sufficient conditions, iterative linear matrix inequality algorithms are proposed for maximizing the stability regions of the systems. Finally, two examples are given to illustrate the effectiveness of the methods presented in this paper.  相似文献   

5.
The problem of robust stability analysis for uncertain discrete singular time‐delay systems is investigated in this paper. By decomposing the nominal system into slow and fast subsystems, a linear matrix inequality (LMI) condition is proposed for a discrete singular time‐delay system to be regular, causal and stable. Based on this, an LMI criterion is obtained for robust stability of an uncertain discrete singular time‐delay system. Two numerical examples are provided to demonstrate the feasibility of the proposed approach.  相似文献   

6.
The robust stochastic stability, stabilization and H control for mode‐dependent time‐delay discrete Markovian jump singular systems with parameter uncertainties are discussed. Based on the restricted system equivalent (r.s.e.) transformation and by introducing new state vectors, the singular system is transformed into a standard linear system, and delay‐dependent linear matrix inequalities (LMIs) conditions for the mode‐dependent time‐delay discrete Markovian jump singular systems to be regular, causal and stochastically stable, and stochastically stable with γ‐disturbance attenuation are obtained, respectively. With these conditions, robust stabilization problem and robust H control problem are solved, and the LMIs sufficient conditions are obtained. A numerical example illustrates the effectiveness of the method given in the paper. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Considers the problems of robust stability and stabilization for uncertain continuous singular systems with state delay. The parametric uncertainty is assumed to be norm bounded. The purpose of the robust stability problem is to give conditions such that the uncertain singular system is regular, impulse free, and stable for all admissible uncertainties, while the purpose of the robust stabilization is to design a state feedback control law such that the resulting closed-loop system is robustly stable. These problems are solved via the notions of generalized quadratic stability and generalized quadratic stabilization, respectively. Necessary and sufficient conditions for generalized quadratic stability and generalized quadratic stabilization are derived. A strict linear matrix inequality (LMI) design approach is developed. An explicit expression for the desired robust state feedback control law is also given. Finally, a numerical example is provided to demonstrate the application of the proposed method  相似文献   

8.
This paper addresses the problems of local stabilization and control of open‐loop unstable discrete‐time quadratic systems subject to persistent magnitude bounded disturbances and actuator saturation. Firstly, for some polytopic region of the state‐space containing the origin, a method is derived to design a static nonlinear state feedback control law that achieves local input‐to‐state stabilization with a guaranteed stability region under nonzero initial conditions and persistent bounded disturbances. Secondly, the stabilization method is extended to deliver an optimized upper bound on the ?‐induced norm of the closed‐loop system for a given set of persistent bounded disturbances. Thirdly, the stabilization and ? designs are adapted to cope with actuator saturation by means of a generalized sector bound constraint. The proposed controller designs are tailored via a finite set of state‐dependent linear matrix inequalities. Numerical examples are presented to illustrate the potentials of the proposed control design methods. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
The problem of event‐triggered guaranteed cost consensus of discrete‐time singular multi‐agent systems with switching topologies is investigated in this paper. To save the limited network communication bandwidth of multi‐agent systems, a novel event‐triggered networked consensus mechanism is proposed. Based on the graph theory and singular system theory, sufficient conditions of guaranteed‐cost consensus of discrete‐time singular multi‐agent systems are derived and given in the form of the linear matrix inequalities, respectively. A co‐design approach of the multi‐agent consensus gain matrix and the event‐triggered parameters is presented. Furthermore, based on the approach of second class equivalent transformation for singular systems, the cost function is determined, and an explicit expression of consensus functions is presented. Finally, a numerical example is provided to illustrate the effectiveness of the proposed method.  相似文献   

10.
This note considers the generalized quadratic stability problem for continuous-time singular system with nonlinear perturbation. The perturbation is a function of time and system state and satisfies a Lipschitz constraint. In this work, a sufficient condition for the existence and uniqueness of solution to the singular system is firstly presented. Then by using S-procedure and matrix inequality approach, a necessary and sufficient condition is presented in terms of linear matrix inequality, under which the maximal perturbation bound is obtained to guarantee the generalized quadratic stability of the system. That is, the system remains exponential stable and the nominal system is regular and impulse free. Furthermore, robust stability for nonsingular systems with perturbation can be obtained as a special case. Finally, the effectiveness of the developed approach for both singular and nonsingular systems is illustrated by numerical examples.  相似文献   

11.
In this paper, a new approach for stability analysis of time‐dependent switched linear systems is proposed. System equivalence is the main idea in this new approach, which derives a switched discrete linear parameter‐varying system from the switched continuous‐time linear switched system with interval dwell time, and the stability properties of the two corresponding systems are proved to be equivalent. Then, by applying a quadratic Lyapunov function approach for the equivalent switched discrete system, the stability of the switched continuous‐time linear system can be established without checking any average dwell time condition. Finally the computation complexity is analyzed, and mode incidence matrix is introduced to reduce the computation cost.  相似文献   

12.
In this paper, the exponential stability problem is investigated for a class of discrete‐time singular switched systems with time‐varying delay. By using a new Lyapunov functional and average dwell time scheme, a delay‐dependent sufficient condition is established in terms of linear matrix inequalities for the considered system to be regular, causal, and exponentially stable. Different from the existing results, in the considered systems the corresponding singular matrices do not need to have the same rank. A numerical example is given to demonstrate the effectiveness of the proposed result.  相似文献   

13.
This paper is concerned with establishing robust stability and stabilization criteria for discrete singular time‐delay linear parameter varying (LPV) systems. Firstly, a robust stability criterion is obtained for this class of systems by a delay‐partition approach, and thereby a less conservative sufficient condition which guarantees discrete singular time‐delay LPV systems to be admissible is given. Secondly, a class of state feedback controllers for stabilizing discrete singular time‐delay LPV systems is designed. Finally, compared with existing results, the numerical results of several examples illustrate the effectiveness of the approach proposed in this paper. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

14.
This paper is concerned with the problem of reachable set estimation for discrete‐time singular systems with bounded input disturbances. Based on the Lyapunov method, a new sufficient condition is established in terms of linear matrix inequality (LMI) to guarantee that the reachable set of discrete‐time singular system is bounded by the intersection of ellipsoids. Then the result is extended to the problem for discrete‐time singular systems with time‐varying delay by utilizing the delay‐dependent approach and free weighting matrices. Two numerical examples are provided to demonstrate the effectiveness of the obtained results proposed in this paper.  相似文献   

15.
This paper is devoted to the problem of computing control laws for the stabilization of continuous‐time linear time‐varying systems. First, a necessary and sufficient condition to assess the stability of a linear time‐varying system based on the norm of the transition matrix computed over a sequence of successive finite‐time intervals is proposed. A link with a stability condition for an equivalent discrete‐time model is also established. Then, 3 approaches for the computation of stabilizing state‐feedback gains are proposed: a continuous‐time technique, ie, directly derived from the stability condition, not suitable for numerical implementation; a method based on the stabilization of the discrete‐time equivalent model along with a transformation to generate the desired continuous‐time gain; and the computation of stabilizing gains for a set of periodic discrete‐time systems. Finally, by adapting one of the existing methods for the stabilization of periodic discrete‐time systems, an algorithm for the computation of a stabilizing state‐feedback continuous‐time gain is proposed. A numerical example illustrates the validity of the technique.  相似文献   

16.
In this paper we consider a linear, discrete‐time system depending multi‐affinely on uncertain, real time‐varying parameters. A new sufficient condition for the stability of this class of systems, in terms of a feasibility problem involving linear matrix inequalities (LMIs), is obtained under the hypothesis that a bound on the rate of variation of the parameters is known. This condition, obtained by the aid of parameter dependent Lyapunov functions, obviously turns out to be less restrictive than that one obtained via the classical quadratic stability (QS) approach, which guarantees stability in presence of arbitrary time‐varying parameters. An important point is that the methodology proposed in this paper may result in being less conservative than the classical QS approach even in the absence of an explicit bound on the parameters rate of variation. Concerning the synthesis context, the design of a gain scheduled compensator based on the above approach is also proposed. It is shown that, if a suitable LMI problem is feasible, the solution of such problem allows to design an output feedback gain scheduled dynamic compensator in a controller‐observer form stabilizing the class of systems which is dealt with. The stability conditions are then extended to take into account L2 performance requirements. Some numerical examples are carried out to show the effectiveness and to investigate the computational burden required by the proposed approach. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
This paper investigates the quadratic stability and stabilization of a class of matrix second‐order time‐varying systems. All the system matrices including the second‐order differential coefficient matrix are assumed to have the time‐varying norm‐bounded parameters. Necessary and sufficient conditions for the quadratic stability and stabilization of such time‐varying systems are derived. All the results are obtained in terms of linear matrix inequalities. Two illustrative examples are given to show that our results are effective and less conservative than the results obtained by other researchers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, we address the ?? model reduction problem for linear time‐invariant discrete‐time systems. We revisit this problem by means of linear matrix inequality (LMI) approaches and first show a concise proof for the well‐known lower bounds on the approximation error, which is given in terms of the Hankel singular values of the system to be reduced. In addition, when we reduce the system order by the multiplicity of the smallest Hankel singular value, we show that the ?? optimal reduced‐order model can readily be constructed via LMI optimization. These results can be regarded as complete counterparts of those recently obtained in the continuous‐time system setting.  相似文献   

19.
The problem of delay‐dependent robust stabilization for uncertain singular time‐delay systems is investigated in this paper. The parameter uncertainty is assumed to be norm‐bounded and possibly time‐varying, while the time delay considered here is assumed to be constant but unknown. A delay‐dependent condition is presented for a singular time‐delay system to be regular, impulse free, and stable, based on which robust stability analysis and the robust stabilization problem are studied. An explicit expression for the desired state‐feedback control law is also given. The obtained results are formulated in terms of linear matrix inequalities (LMIs), which involve no decomposition of the system matrices. Some numerical examples are given to show the efficiency of the theoretical conditions.  相似文献   

20.
The robust stability and robust stabilization for time‐delay discrete singular systems with parameter uncertainties is discussed. A delay‐dependent linear matrix inequality (LMI) condition for the time‐delay discrete systems to be nonsingular and stable is given. Based on this condition and the restricted system equivalent transformation, the delay‐dependent LMI condition is proposed for the time‐delay discrete singular systems to be admissible. With this condition, the problems of robust stability and robust stabilization are solved, and the delay‐dependent LMI conditions are obtained. Numerical examples illustrate the effectiveness of the method given in the paper. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号