首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper develops a kinematic path‐tracking algorithm for a nonholonomic mobile robot using an iterative learning control (ILC) technique. The proposed algorithm produces a robot velocity command, which is to be executed by the proper dynamic controller of the robot. The difference between the velocity command and the actual velocity acts as state disturbances in the kinematic model of the mobile robot. Given the kinematic model with state disturbances, we present an ILC‐based path‐tracking algorithm. An iterative learning rule with both predictive and current learning terms is used to overcome uncertainties and the disturbances in the system. It shows that the system states, outputs, and control inputs are guaranteed to converge to the desired trajectories with or without state disturbances, output disturbances, or initial state errors. Simulations and experiments using an actual mobile robot verify the feasibility and validity of the proposed learning algorithm. © 2005 Wiley Periodicals, Inc.  相似文献   

2.
This paper presents the application of iterative learning control (ILC) to compensate hysteresis in a piezoelectric actuator. The proposed controller is a hybrid of proportional-integral-differential (PID) control, whose main function is for trajectory tracking, and a chatter-based ILC, whose main function is for hysteresis compensation. Stability analysis of the proposed ILC is presented, with the PID included in the dynamic of the piezoelectric actuator. The performance of the proposed controller is analysed through simulation and verified with experiment with a piezoelectric actuator.  相似文献   

3.
迭代学习模型预测控制(Iterative learning model predictive control,ILMPC)具备较强的批次学习能力及突出的时域跟踪性能,在批次过程控制中发挥了重要作用.然而对于具有强非线性的快动态批次过程,传统的迭代学习模型预测控制很难实现计算效率与跟踪精度之间的平衡,这给其应用带来了挑战.对此本文提出一种高效迭代学习预测函数控制策略,将原非线性系统沿参考轨迹线性化得到二维跟踪误差预测模型,并在控制器设计中补偿所产生的线性化误差,构造优化目标函数为真实跟踪误差的上界.为加强优化计算效率,在时域上结合预测函数控制以降低待优化变量维数,从而有效降低计算负担.结合终端约束集理论,分析了迭代学习预测函数控制的时域稳定性及迭代收敛性.通过对无人车和典型快速间歇反应器的仿真实验验证所提出算法的有效性.  相似文献   

4.
The tracking control accuracy of the piezoelectric actuator (PEA) is limited due to its inherent hysteresis nonlinearity. A new piezoelectric‐actuator model is synthesized based on two first‐order transfer systems in parallel with two tuned parameters determined from one experiment. Two open‐loop tracking controllers are implemented with the proposed model to compensate the hysteresis of linear positioning. Numerical simulations and experimental tests on the tracking of sinusoidal and triangular waveforms with signal frequencies ranging from 1Hz to 30 Hz are revisited and compared with the conventional Bouc‐Wen and Duhem models. Experimental results reveal that the RMS tracking error can be reduced to less than 2% of the maximum traveling distance without any feedback sensor. When a piezoelectric actuated on a two Degree‐Of‐Freedom (DOF) monolithic motion stage was employed, the RMS tracking error was 50 nm within the measured sensor accuracy.  相似文献   

5.
针对一类具有非线性和执行器故障的重复运行不确定离散系统,提出了一种迭代学习鲁棒容错控制算法.首先通过定义执行器故障系数矩阵,将迭代学习控制过程转化为等价形式的不确定性非线性重复过程模型,然后基于混合李亚普若夫函数方法讨论非线性重复过程在时间轴和批次轴两个维度上的稳定性,并以线性矩阵不等式形式给出鲁棒容错控制器存在的充分条件和设计方法,同时保证系统正常和执行器故障情形下系统的容错稳定性能.最后,单杆机械手系统的输出跟踪控制仿真结果验证了本文算法的有效性.  相似文献   

6.
In this paper, a novel self‐tuning method of optimal PID control laws is proposed for both continuous‐time systems and discrete‐time systems. The controlled plant is assumed to be unknown except the system order (or system delay) and the direction of transmitting control input. Through the minimization of PID gains subject to the Lyapunov stability based reaching condition, the tuning of the three PID control gains is transformed to solve the inequality constraint optimization problem. An unknown SISO nonlinear system subject to a unit step input, and the tracking control problem of the piezoelectric actuator (PZA) with unknown dynamics are simulated. The simulation results show that the excellent tracking performance can be achieved.  相似文献   

7.
A novel model‐free iterative adaptive controller is presented for low‐power control of piezoelectric actuators. The controller uses simple adaptation rules based on known general behavior of piezoelectric actuators to adjust on‐off switching times to drive piezoelectric actuators through a desired transient step motion. Adaptation rules are based on small numbers of measurements taken during each iteration of the actuator movement. Combined with the use of only on‐off control inputs, controller implementation can be possible at much lower overall power levels than would be needed to implement a conventional control strategy such as through pulse‐width‐modulation (PWM) with real‐time feedback. Such power savings are particularly important for the intended controller application to piezoelectric microactuators driving autonomous terrestrial micro‐robots. A method for predicting convergence of systems with nominally linear dynamics and unknown, bounded nonlinearities is described, and applied to a sample target piezoelectric actuator. The controller is tested in simulation and experimentally on a piezoelectric cantilever actuator, and shows predicted convergence to the desired response. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

8.
In this paper, an active vibration control (AVC) incorporating active piezoelectric actuator and self-learning control for a flexible plate structure is presented. The flexible plate system is first modelled and simulated via a finite difference (FD) method. Then, the validity of the obtained model is investigated by comparing the plate natural frequencies predicted by the model with the reported values obtained from literature. After validating the model, a proportional or P-type iterative learning (IL) algorithm combined with a feedback controller is applied to the plate dynamics via the FD simulation platform. The algorithms were then coded in MATLAB to evaluate the performance of the control system. An optimized value of the learning parameter and an appropriate stopping criterion for the IL algorithm were also proposed. Different types of disturbances were employed to excite the plate system at different excitation points and the controller ability to attenuate the vibration of observation point was investigated. The simulation results clearly demonstrate an effective vibration suppression capability that can be achieved using piezoelectric actuator with the incorporated self-learning feedback controller.  相似文献   

9.
Superposition principle (SP)—the response (output) of a linear system to a weighted combination of inputs equals to the combination of the outputs with the same weights and each corresponding to the individual input, respectively—is one of the most fundamental properties of linear systems, and has been exploited for controls, for example, in the development of model predictive control. Extension of the superposition principle beyond linear systems, however, is largely limited. In this paper, the almost superposition of Hammerstein systems (ASHS) and its application to precision control of hysteresis‐Hammerstein systems is studied. We first show, under some minor conditions, the existence of a nonstrict form ASHS, and under one further condition, the strict‐form ASHS. We then present one application of the ASHS—simultaneous hysteresis and dynamics compensation in output tracking of hysteresis‐Hammerstein systems, where offline iterative learning control to track the output elements is integrated with online synthesis of the control input via an inverse Preisach modeling. The proposed ASHS‐based technique is further enhanced through two online optimization schemes, and then illustrated through a simulation example on piezoelectric actuators model.  相似文献   

10.
This research deals with developing an intelligent trajectory tracking control approach for an aircraft in the presence of internal and external disturbances. Internal disturbances including actuators faults, unmodeled dynamics, and model uncertainties as well as the external disturbances such as wind turbulence significantly affect the performance of the common trajectory tracking control approaches. There are several fault‐tolerant control approaches in the literature to overcome the effects of specific actuator or sensor faults during the flight. However, trajectory tracking control of an air vehicle in the presence of unexpected faults and simultaneous presence of wind turbulence is still a challenging problem. In this paper, an intelligent neural network‐based model predictive control structure is proposed, where the prediction model is updated in each iteration based on a novel proposed online sequential multimodel structure. A hybrid offline‐online learning algorithm is adopted in the introduced online sequential multimodel structure to identify the time‐varying dynamics of the system. The proposed control structure can satisfactorily deal with unexpected actuator faults and structural damages as well as unmodeled dynamics and wind turbulence. The stability of the closed‐loop system is proved under some realistic assumptions. The simulation results demonstrate the high capability of the proposed approach for trajectory tracking control of a conventional aircraft in the simultaneous presence of system faults and external disturbances.  相似文献   

11.
A novel control technique is proposed by combining iterative learning control (ILC) and model predictive control (MPC) with updating-reference trajectory for point-to-point tracking problem of batch process. In this paper, a batch-to-batch updating-reference trajectory, which passes through the desired points, is firstly designed as the tracking trajectory within a batch. The updating control law consists of P-type ILC part and MPC part, in which P-type ILC part can improve the performance by learning from previous executions and MPC part is used to suppress the model perturbations and external disturbances. Convergence properties of the integrated predictive iterative learning control (IPILC) are analyzed theoretically, and the sufficient convergence conditions of output tracking error are also derived for a class of linear systems. Comparing with other point-to-point tracking control algorithms, the proposed algorithm can perform better in robustness. Furthermore, updating-reference relaxes the constraints for system outputs, and it may lead to faster convergence and more extensive range of application than those of fixed-reference control algorithms. Simulation results on typical systems show the effectiveness of the proposed algorithm.  相似文献   

12.
对存在执行器故障的连续线性时变系统,给出了PID型迭代学习容错控制律的收敛条件。对连续时变故障系统设计了一种PID迭代学习容错控制律,在[λ]范数意义下给出了故障系统PID型迭代容错控制器收敛的充要条件;基于Schur补原理和不等式变换,将容错控制器收敛条件转换成线性矩阵不等式,当迭代学习收敛速度设定时,基于线性矩阵不等式能快速确定最优迭代控制增益,避免了迭代控制增益设置的盲目性。旋转控制系统的数值仿真,验证了PID迭代容错控制器优良的容错性能和跟踪性能。  相似文献   

13.
In this work, we propose a novel iterative learning control algorithm to deal with a class of nonlinear systems with system output constraint requirements and quantization effects on the system control input. Actuator faults have also been considered, which include multiplicative, additive, and stuck actuator faults. To the best of our knowledge, this is the first reported work in the iterative learning control literature to deal with quantization effects for the control input of nonlinear systems under the effects of actuator faults and system output constraints. Under the proposed scheme, using backstepping design and composite energy function approaches in the analysis, we show that uniform convergence of the state tracking errors can be guaranteed over the iteration domain, and the constraint requirement on the system output will not be violated at all time. In the end, a simulation study on a single‐link robot model is presented to demonstrate the effectiveness of the proposed scheme.  相似文献   

14.
针对一款具有波纹管外形的充气伸长型气动软体驱动器(简称“气动波纹管驱动器”),提出一种基于宽度学习系统的无模型跟踪控制方法,使该驱动器有效跟踪期望轨迹.首先,介绍气动波纹管驱动器结构,以及气动波纹管驱动器整体实验平台工作原理.根据驱动器实时位置信息提出一种基于宽度学习系统的跟踪控制方法,受PID跟踪控制方法中积分项作用的启发,所提出控制方法不仅采用系统跟踪误差作为宽度学习系统的输入之一,还将跟踪误差对时间的积分项作为另一输入以消除期望轨迹与实际轨迹间的恒定偏差.然后,采用宽度学习系统计算得到控制气压,同时,利用基于梯度下降法的学习律在线调整宽度学习系统权值,进而减小驱动器跟踪误差.最后,通过实验验证所提出方法的有效性.所提出方法无需建立驱动器模型,能够简化控制器设计步骤,且与深度神经网络控制方法相比,能在避免计算量过大的前提下实现较高的跟踪控制精度.  相似文献   

15.
针对环卫车辆周期重复性工作特点,考虑模型时变以及未知扰动问题,提出一种基于无模型自适应迭代学习的环卫车辆轨迹跟踪控制方法.首先,针对环卫车辆建立了两轮移动机器人的运动学模型,然后,给出带时变参数和非线性不确定项的迭代域下全格式动态线性化数据模型,引入时间差分估计算法,设计基于最优性能指标的轨迹跟踪无模型自适应迭代学习控...  相似文献   

16.
System inversion provides a nature avenue to utilize the priori knowledge of system dynamics in iterative learning control, resulting in rapid convergence and exact tracking (for nonminimum-phase systems). The benefits of system inversion, however, are not fully exploited in the time-domain ILC approach due to the lack of uncertainty quantification. This critical limit was alleviated in the frequency-domain formulated inversion-based iterative control (IIC) techniques. The existing IIC techniques, however, are for single-input–single-output (SISO) systems only, and the time-domain properties of the IIC techniques are unclear. The contributions of the proposed multi-axis inversion-based iterative control (MAIIC) approach are twofold: First, the IIC technique is extended from SISO systems to multi-input–multi-output systems and is easy to implement in practice. The iterative control law is optimized by using the quantification of the system uncertainty. Secondly, the time-domain properties of the MAIIC law are discussed. The proposed MAIIC technique is illustrated through 3D nanopositioning experiments using piezoelectric actuators. The experimental results clearly demonstrated that by using the proposed technique, precision tracking in all 3D axes can be achieved in the presence of a pronounced cross-axis dynamics coupling effect.  相似文献   

17.
电动伺服舵机系统中的迭代学习控制   总被引:2,自引:0,他引:2  
电动伺服舵机控制系统采用全数字三环控制策略,分别为位置环、速度环和电流环;作为内环的电流环,应具有良好的稳态和动态特性,其输出电流要求快速准确地跟踪给定电流,以保证舵机控制系统高性能位置伺服的要求;在传统的增量式积分分离PI控制算法的基础上,引入-D型迭代学习控制前馈环节,提高了电流跟踪的快速性和跟踪精度,建立了系统的数学模型并在MATLAB上进行了系统仿真;仿真结果表明,引入D型迭代学习控制后,电流环的稳态和动态特性良好,保证了输出电流跟踪的快速性、精确性.  相似文献   

18.
基于故障跟踪估计器的非线性时滞系统故障诊断   总被引:4,自引:0,他引:4  
提出一种可有效检测和估计一类非线性时滞系统故障的故障跟踪估计器.根据预测控制和迭代学习控制的思想,在所选取的优化时域长度内,通过迭代算法调节故障跟踪估计器中的可调参数,使之逼近系统中实际发生的故障.与以往基于观测器的故障诊断方法不同的是,故障跟踪估计器可同时检测和估计系统中发生的故障,而且针对不同类型的故障亦有很好的适应性.仿真结果表明了所提出算法的可行性和有效性.  相似文献   

19.
针对一类满足Lipschitz条件的多输入多输出非线性可逆系统执行器故障问题,提出了一种基于迭代学习观测器的逆系统内模故障调节方法。引入PD型迭代学习策略,设计了迭代学习故障诊断观测器,用于对执行器未知时变故障进行快速、准确估计。根据故障估计值,结合逆系统方法对逆模型进行补偿,使得补偿后的逆模型与非线性被控对象串联仍为伪线性系统;再结合内模控制实现了伪线性系统的容错控制。最后,通过仿真算例验证了该方案的有效性。  相似文献   

20.
基于2维性能参考模型的2维模型预测迭代学习控制策略   总被引:1,自引:0,他引:1  
将迭代学习控制(Iterative learning control, ILC)系统看作一类具有2维动态特性的控制系统,根据模型预测控制(Model predictive control, MPC)和性能参考模型控制思想, 提出了一种基于2维性能参考模型的2维模型预测迭代学习控制系统设计方案.在该控制系统设计方案中,可以通过选择适当的2 维性能参考模型来构造2 维动态变化的设定值信号和预测控制信号,从而引导迭代学习控制系统收敛到合理的控制性能,并有效避 免系统性能收敛过程中控制输入可能发生的剧烈波动.通过对控制系统的结构分析可知,所得的迭代学习控制器本质上是由沿时 间指标的参考模型预测控制器和沿周期指标的迭代学习控制器组成,闭环系统的收敛性等价于一个2维滤波系统的稳定性.数值仿 真结果证明了该设计方案的有效性和鲁棒性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号