首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The application of well‐defined poly(furfuryl glycidyl ether) (PFGE) homopolymers and poly(ethylene oxide)‐b‐poly(furfuryl glycidyl ether) (PEO‐b‐PFGE) block copolymers synthesized by living anionic polymerization as self‐healing materials is demonstrated. This is achieved by thermo‐reversible network formation via (retro) Diels‐Alder chemistry between the furan groups in the side‐chain of the PFGE segments and a bifunctional maleimide crosslinker within drop‐cast polymer films. The process is studied in detail by differential scanning calorimetry (DSC), depth‐sensing indentation, and profilometry. It is shown that such materials are capable of healing complex scratch patterns, also multiple times. Furthermore, microphase separation within PEO‐b‐PFGE block copolymer films is indicated by small angle X‐ray scattering (lamellar morphology with a domain spacing of approximately 19 nm), differential scanning calorimetry, and contact angle measurements.  相似文献   

2.
This paper reports the design of a tailor made polymeric membrane by using poly(ethylene oxide)–poly(butylene terephthalate) (PEO‐PBT) multi‐block copolymers. Their properties are controlled by the fraction of the PEO phase and its molecular weight. To explain the effect of structural changes in copolymer membranes, transport properties of four gases (CO2, H2, N2, and CH4) are discussed. After characterization, the two best copolymers are selected in order to prepare tailor made blends by adding poly(ethylene glycol) (PEG). The best selected copolymer that contained 55 wt. % of 4000 g mol−1 PEO produced a blend with high CO2 permeability (∼190 barrer), which is twice the permeability of the pure copolymer. At the same time, an enhancement of CO2/H2 selectivity is observed (∼13). These results suggest that the morphology of PEO‐PBT can be well controlled by the addition of low‐molecular‐weight PEG, and consequently the gas transport properties can be tuned.  相似文献   

3.
Vertical orientation of lamellar and cylindrical nanodomains of block copolymers on substrates is one of the most promising means for developing nanopatterns of next‐generation microelectronics and storage media. However, parallel orientation of lamellar and cylindrical nanodomains is generally preferred due to different affinity between two block segments in a block copolymer toward the substrate and/or air. Thus, vertical orientation of the nanodomains is only obtained under various pre‐ or post‐treatments such as surface neutralization by random copolymers, solvent annealing, and electric or magnetic field. Here, a novel self‐neutralization concept is introduced by designing molecular architecture of a block copolymer. Star‐shaped 18 arm poly(methyl methacrylate)‐block‐polystyrene copolymers ((PMMA‐b‐PS)18) exhibiting lamellar and PMMA cylindrical nanodomains are synthesized. When a thin film of (PMMA‐b‐PS)18 is spin‐coated on a substrate, vertically aligned lamellar and cylindrical nanodomains are obtained without any pre‐ or post‐treatment, although thermal annealing for a short time (less than 30 min) is required to improve the spatial array of vertically aligned nanodomains. This result is attributed to the star‐shaped molecular architecture that overcomes the difference in the surface affinity between PS and PMMA chains. Moreover, vertical orientations are observed on versatile substrates, for instance, semiconductor (Si, SiOx), metal (Au), PS or PMMA‐brushed substrate, and a flexible polymer sheet of polyethylene naphthalate.  相似文献   

4.
A simple fabrication, scalable to centimeter scale, of a permeable membrane made of block copolymer containing molecular transport channels is demonstrated by coating photo‐crosslinkable liquid‐crystalline block copolymer, consisting of poly(ethylene oxide) (PEO) and poly(methacrylate) (PMA) bearing stilbene (Stb) mesogens in the side chains (PEO114b‐PMA(Stb)52), onto a sacrificial cellulose acetate film substrate. After thermal annealing, perpendicularly aligned and hexagonally arranged PEO cylindrical domains with a surface density of 1011 cm?2 were formed and then fixed efficiently by photo‐crosslinking the stilbene moieties in the PMA(Stb) domains by [2 + 2] dimerization. The fully penetrating straight PEO cylindrical domains across the 480‐nm‐thick membrane were well‐defined and visualized as molecule‐transport channels. After exfoliated by removal of the cellulose acetate layer, the membrane could be transferred onto another substrate by either scooping or a horizontal lifting method. Throughout the processes, the fully penetrating PEO channels across the membrane are preserved to open at both ends. A simple permeation experiment demonstrates that rhodamine dyes permeate efficiently through the PEO cylindrical channels of the annealed membrane but not across a non‐annealed one.  相似文献   

5.
A general strategy to disperse and functionalize pristine carbon nanotubes in a single‐step process is developed using conjugated block copolymers. The conjugated block copolymer contains two blocks: a conjugated polymer block of poly(3‐hexylthiophene), and a functional non‐conjugated block with tunable composition. When the pristine carbon nanotubes are sonicated with the conjugated block copolymers, the poly(3‐hexylthiophene) blocks bind to the surface of de‐bundled carbon nanotubes through non‐covalent ππ interactions, stabilizing the carbon nanotube dispersion, while the functional blocks locate at the outer surface of carbon nanotubes, rendering the carbon nanotubes with desired functionality. In this paper, conjugated block copolymers of poly(3‐hexylthiophene)‐b‐poly(methyl methacrylate), poly(3‐hexylthiophene)‐b‐poly(acrylic acid), and poly(3‐hexylthiophene)‐b‐poly(poly(ethylene glycol) acrylate) are used to demonstrate this general strategy.  相似文献   

6.
Scanning force microscopy (SFM) is used to study the surface morphology of spin‐coated thin films of the ion‐transport polymer poly(ethylene oxide) (PEO) blended with either cyclodextrin (CD)‐threaded conjugated polyrotaxanes based on poly(4,4′‐diphenylene‐vinylene) (PDV), β‐CD–PDV, or their uninsulated PDV analogues. Both the polyrotaxanes and their blends with PEO are of interest as active materials in light‐emitting devices. The SFM analysis of the blended films supported on mica and on indium tin oxide (ITO) reveals in both cases a morphology that reflects the substrate topography on the (sub‐)micrometer scale and is characterized by an absence of the surface structure that is usually associated with phase segregation. This observation confirms a good miscibility of the two hydrophilic components, when deposited by using spin‐coating, as suggested by the luminescence data on devices and thin films. Clear evidence of phase segregation is instead found when blending PEO with a new organic‐soluble conjugated polymer such as a silylated poly(fluorene)‐alt‐poly(para‐phenylene) based polyrotaxane (THS–β‐CD–PF–PPP). The results obtained are relevant to the understanding of the factors influencing the interfacial and the intermolecular interactions with a view to optimizing the performance of light‐emitting diodes, and light‐emitting electrochemical cells based on supramolecularly engineered organic polymers.  相似文献   

7.
Novel donor–acceptor rod–coil diblock copolymers of regioregular poly(3‐hexylthiophene) ( P3HT )‐block‐poly(2‐phenyl‐5‐(4‐vinylphenyl)‐1,3,4‐oxadiaz‐ole) ( POXD ) are successfully synthesized by the combination of a modified Grignard metathesis reaction ( GRIM ) and atom transfer radical polymerization ( ATRP ). The effects of the block ratios of the P3HT donor and POXD pendant acceptor blocks on the morphology, field effect transistor mobility, and memory device characteristics are explored. The TEM, SAXS, WAXS, and AFM results suggest that the coil block fraction significantly affects the chain packing of the P3HT block and depresses its crystallinity. The optical absorption spectra indicate that the intramolecular charge transfer between the main chain P3HT donor and the side chain POXD acceptor is relatively weak and the level of order of P3HT chains is reduced by the incorporation of the POXD acceptor. The field effect transistor (FET) hole mobility of the system exhibits a similar trend on the optical properties, which are also decreased with the reduced ordered P3HT crystallinity. The low‐lying highest occupied molecular orbital (HOMO) energy level (–6.08 eV) of POXD is employed as charge trap for the electrical switching memory devices. P3HT‐ b ‐POXD exhibits a non‐volatile bistable memory or insulator behavior depending on the P3HT / POXD block ratio and the resulting morphology. The ITO/ P3HT44b‐ POXD18 /Al memory device shows a non‐volatile switching characteristic with negative differential resistance (NDR) effect due to the charge trapped POXD block. These experimental results provide the new strategies for the design of donor‐acceptor rod‐coil block copolymers for controlling morphology and physical properties as well as advanced memory device applications.  相似文献   

8.
A high concentration of cell‐free DNA (cfDNA) in joints is considered a disease causative agent of rheumatoid arthritis (RA) and cfDNA scavenging has been regarded as an efficient therapeutic avenue. Cationic polymers can hamper progression of joint inflammation in a rat model of RA by scavenging cfDNA; however, they may cause systemic toxicity due to the strong positive charges. To reduce the toxicity, herein a library of cationic nanoparticles (cNPs) of block copolymer micelles is developed and the effects of structure and surface composition on cNP efficacy to bind nucleic acids, toxicity, and therapeutic activity on a collagen induced arthritis (CIA) rat model of RA are assessed. The library includes cNPs with a homoshell from poly(lactic‐co‐glycolic acid)‐block‐poly(2‐(dimethylamino)ethyl methacrylate) (PLGA‐b‐PDMA) block copolymers and cNPs with a mixed shell of poly(ethylene glycol) (PEG) and PDMA by coself‐assembling PLGA‐b‐PDMA and PLGA‐b‐PEG block copolymers. Relatively to the homoshell cNPs, introduction of PEG segments translates into a lower DNA binding efficacy while preserving ability to hamper joint inflammation. Moreover, they show a greater accumulation and longer retention at the inflamed joints, allowing a lower administration frequency. In conclusion, this work shows that the therapeutic index of cationic materials can be tuned by introducing surface neutral moieties.  相似文献   

9.
Conjugated rod‐coil block copolymers provide an interesting route towards enhancing the properties of the conjugated block due to self‐assembly and the interplay of rod‐rod and rod‐coil interactions. Here, we demonstrate the ability of an attached semi‐fluorinated block to significantly improve upon the charge carrier properties of regioregular poly(3‐hexyl thiophene) (rr‐P3HT) materials on bare SiO2. The thin film hole mobilities on bare SiO2 dielectric surfaces of poly (3‐hexyl thiophene)‐block‐polyfluoromethacrylates (P3HT‐b‐PFMAs) can approach up to 0.12 cm2 V?1 s?1 with only 33 wt% of the P3HT block incorporated in the copolymer, as compared to rr‐P3HT alone which typically has mobilities averaging 0.03 cm2 V?1 s?1. To our knowledge, this is the highest mobility reported in literature for block copolymers containing a P3HT. More importantly, these high hole mobilities are achieved without multistep OTS treatments, argon protection, or post‐annealing conditions. Grazing incidence wide‐angle x‐ray scattering (GIWAX) data revealed that in the P3HT‐b‐PFMA copolymers, the P3HT rod block self‐assembles into highly ordered lamellar structures, similar to that of the rr‐P3HT homopolymer. Grazing incidence small‐angle x‐ray scattering (GISAXS) data revealed that lamellar structures are only observed in perpendicular direction with short PFMA blocks, while lamellae in both perpendicular and parallel directions are observed in polymers with longer PFMA blocks. AFM, GIWAXS, and contact angle measurements also indicate that PFMA block assembles at the polymer thin film surface and forms an encapsulation layer. The high charge carrier mobilities and the hydrophobic surface of the block copolymer films clearly demonstrates the influence of the coil block segment on device performance by balancing the crystallization and microphase separation in the bulk morphological structure.  相似文献   

10.
Binary thermosensitive nanocomposites are fabricated by grafting block copolymers of poly(N‐isopropylacrylamide) and poly(methoxy‐oligo(ethylene glycol) methacrylate) onto gold nanoparticles through consecutive, surface‐initiated, atom‐transfer radical polymerization (ATRP). These Au@copolymer nanocomposites display a well‐defined core/shell nanostructure and have two thermosensitive points near 33 and 55 °C in an aqueous suspension corresponding to the thermally induced conformational transition of inner homopolymer segments and outer oligo(ethylene glycol)‐containing copolymer layer, respectively. Silver nanoparticles trapped within Au@copolymer nanocomposites with weakly crosslinked shells display thermally modulated catalytic activity as heterogeneous catalysts because of the thermosensitive collapse of the polymer layers.  相似文献   

11.
Thin films of block copolymers are extremely attractive for nanofabrication because of their ability to form uniform and periodic nanoscale structures by microphase separation. One shortcoming of this approach is that to date the design of a desired equilibrium structure requires synthesis of a block copolymer de novo within the corresponding volume ratio of the blocks. In this work, solvent vapor annealing in supported thin films of poly(2‐hydroxyethyl methacrylate)‐block‐poly(methyl methacrylate) [PHEMA‐b‐PMMA] by means of grazing incidence small angle X‐ray scattering (GISAXS) is investigated. A spin‐coated thin film of a lamellar block copolymer is solvent vapor annealed to induce microphase separation and improve the long‐range order of the self‐assembled pattern. Annealing in a mixture of solvent vapors using a controlled volume ratio of solvents, which are chosen to be preferential for each block, enables selective formation of ordered lamellae, gyroid, hexagonal, or spherical morphologies from a single‐block copolymer with a fixed volume fraction. The selected microstructure is then kinetically trapped in the dry film by rapid drying. This paper describes what is thought to be the first reported case where in situ methods are used to study the transition of block copolymer films from one initial disordered morphology to four different ordered morphologies, covering much of the theoretical diblock copolymer phase diagram.  相似文献   

12.
Well‐defined copolymers of biocompatible poly(?‐caprolactone) (PCL) and poly(ethylene oxide) (PEO) are synthesized by two methods. Graft copolymers with a gradient structure are prepared by ring‐opening copolymerization of ?‐caprolactone (?CL) with a PEO macromonomer of the ?CL‐type. The ?CL polymerization is initiated by a PEO macroinitiator to prepare diblock copolymers. These amphiphilic copolymers are used as stabilizers for biodegradable poly(D,L ‐lactide) (PLA) nanoparticles prepared by a nanoprecipitation technique. The effect of the copolymer characteristic features (architecture, composition, and amount) on the nanoparticle formation and structure is investigated. The average size, size distribution, and stability of aqueous suspensions of the nanoparticles is measured by dynamic light scattering. For comparison, an amphiphilic random copolymer, poly(methyl methacrylate‐co‐methacrylic acid) (P(MMA‐co‐MA)), is synthesized. The stealthiness of the nanoparticles is analyzed in relation to the copolymer used as stabilizer. For this purpose, the activation of the complement system by nanoparticles is investigated in vitro using human serum. This activation is much less important whenever the nanoparticles are stabilized by a PEO‐containing copolymer rather than by the P(MMA‐co‐MA) amphiphile. The graft copolymers with a gradient structure and the diblock copolymers with similar macromolecular characteristics (molecular weight and hydrophilicity) are compared on the basis of their capacity to coat PLA nanoparticles and to make them stealthy.  相似文献   

13.
The exotic photophysical properties of organic–inorganic hybrid perovskite with long exciton lifetimes and small binding energy have appeared as promising front‐runners for next‐generation non‐volatile flash photomemory. However, the long photo‐programming time of photomemory limits its application on light‐fidelity (Li‐Fi), which requires high storage capacity and short programming times. Herein, the spatially addressable perovskite in polystyrene‐block‐poly(ethylene oxide) (PS‐b‐PEO)/perovskite composite film as an photoactive floating gate is demonstrated to elucidate the effect of morphology on the photo‐responsive characteristics of photomemory. The chelation between lead ion and PEO segment promotes the anti‐solvent functionalities of the perovskite/PS‐b‐PEO composite film, thus allowing the solution‐processable poly(3‐hexylthiophene‐2,5‐diyl) (P3HT) to act as the active channel. Through manipulating the interfacial area between perovskite and P3HT, fast photo‐induced charge transfer rate of 0.056 ns?1, high charge transfer efficiency of 89%, ON/OFF current ratio of 104, and extremely low programming time of 5 ms can be achieved. This solution‐processable and fast photo‐programmable non‐volatile flash photomemory can trigger the practical application on Li‐Fi.  相似文献   

14.
Control over nanopore size and 3D structure is necessary to advance membrane performance in ubiquitous separation devices. Here, inorganic nanoporous membranes are fabricated by combining the assembly of cylinder‐forming poly(styrene‐block‐methyl methacrylate) (PS‐b‐PMMA) block copolymer and sequential infiltration synthesis (SIS). A key advance relates to the use of PMMA majority block copolymer films and the optimization of thermal annealing temperature and substrate chemistry to achieve through‐film vertical PS cylinders. The resulting morphology allows for direct fabrication of nanoporous AlOx by selective growth of Al2O3 in the PMMA matrix during the SIS process, followed by polymer removal using oxygen plasma. Control over the pore diameter is achieved by varying the number of Al2O3 growth cycles, leading to pore size reduction from 21 to 16 nm. 3D characterization, using scanning transmission electron microscopy tomography, reveals that the AlOx channels are continuous through the film and have a gradual increase in pore size with depth. Finally, the ultrafiltration performance of the fabricated AlOx membrane for protein separation as a function of protein size and charge is demonstrated.  相似文献   

15.
Eight random and alternating copolymers PF‐DTBTA derived from 2,7‐fluorene and 4,7‐dithienylbenzotriazole (DTBTA) were synthesized. Thin solid films of the energy‐transfer copolymers possess high absolute photoluminescence (PL) quantum yields (ΦPL) between 60?72%. Inserting PVK layer between anode and emissive layer could show higher electroluminescence (EL) performances due to PVK‐enhanced hole injection. Random copolymers PF‐DTBTA1?15, with DTBTA molar contents from 1% to 15%, displayed yellow EL spectra with high external quantum efficiency (EQEmax) up to 5.78%. PF‐DTBTA50, the alternating copolymer, showed an orange EL with EQEmax of 3.3%. The good ΦPL and EQEmax of the PF‐DTBTA50 with very high DTBTA content indicate that DTBTA is a high efficiency chromophore with very low concentration quenching effects in the solid state PL and EL processes. PF‐DTBTA0.03?0.1 could emit white EL due to partial energy transfer from fluorene segments to DTBTA units. Moreover, white EL devices, with forward‐viewing maximum luminous efficiency up to 11 cd/A and stable white EL spectra (CIE coordinates of (0.33, 0.43)) in high current range from 5 mA to 60 mA, could be realized from the non‐doped polymer with simple binary structure. Our results suggest that DTBTA has big potential to construct high performanced EL polymers or oligomers.  相似文献   

16.
Tailoring the size and surface chemistry of nanoparticles allows one to control their position in a block copolymer, but this is usually limited to one‐dimensional distribution across domains. Here, the hierarchical assembly of poly(ethylene oxide)‐stabilized gold nanoparticles (Au‐PEO) into hexagonally packed clusters inside mesostructured ultrathin films of polystyrene‐block‐poly(methyl methacrylate) (PS‐b‐PMMA) is described. A close examination of the structural evolution at different nanoparticle filling fractions and PEO ligand molecular weights suggests that the mechanism leading to this structure‐within‐structure is the existence of two phase separation processes operating on different time scales. The length of the PEO ligand is shown to influence not only the interparticle distances but also the phase separation processes. These conclusions are supported by novel mesoscopic simulations, which provide additional insight into the kinetic and thermodynamic factors that are responsible for this behavior.  相似文献   

17.
The synthesis of novel semiconducting donor–acceptor (D–A) diblock copolymers by means of nitroxide‐mediated polymerization (NMP) is reported. The copolymers contain functional moieties for hole transport, electron transport, and light absorption. The first block, representing the donor, is made up of either substituted triphenylamines (poly(bis(4‐methoxyphenyl)‐4′‐vinylphenylamine), PvDMTPA) or substituted tetraphenylbenzidines (poly(N,N′‐bis(4‐methoxyphenyl)‐N‐phenyl‐N′‐4‐vinylphenyl‐(1,1′‐biphenyl)‐4,4′‐diamine), PvDMTPD). The second block consists of perylene diimide side groups attached to a polyacrylate backbone (PPerAcr) via a flexible spacer. This block is responsible for absorption in the visible range and for electron‐transport properties. The electrochemical properties of these fully functionalized diblock copolymers, PvDMTPA‐b‐PPerAcr and PvDMTPD‐b‐PPerAcr, are investigated by cyclic voltammetry (CV), and their morphology is investigated by transmission electron microscopy (TEM). All diblock copolymers exhibit microphase‐separated domains in the form of either wire‐ or wormlike structures made of perylene diimide embedded in a hole‐conductor matrix. In single‐active‐layer organic solar cells, PvDMTPD‐b‐PPerAcr reveals a fourfold improvement in power conversion efficiency (η = 0.26 %, short‐circuit current (ISC) 1.21 mA cm–2), and PvDMTPA‐b‐PPerAcr a fivefold increased efficiency (η = 0.32 %, ISC = 1.14 mA cm–2) compared with its unsubstituted analogue PvTPA‐b‐PPerAcr (η = 0.065 %, ISC = 0.23 mA cm–2).  相似文献   

18.
In the present work, a method is proposed to assemble pH‐responsive, flower‐like micelles that can expose a targeting unit at their periphery upon a decrease in pH. The micelles are composed of a novel biotinylated triblock copolymer of poly(εε‐caprolactone)‐block‐poly(ethylene oxide)‐block‐poly(2‐vinylpyridine) (PCL‐b‐PEO‐b‐P2VP) and the non‐biotinylated analogue. The block copolymers are synthesized by sequential anionic and ring‐opening polymerization. The pH‐dependent micellization behaviour in aqueous solution of the triblock copolymers developed is studied using dynamic light scattering, zeta potential, transmission electron microscopy (TEM), and fluorimetric measurements. The shielding of the biotin at neutral pH and their availability at the micelle surface upon protonation is established by TEM and surface plasmon resonance with avidin and streptavidin‐coated gold surfaces. The preliminary stealthy behavior of these pH‐responsive micelles is examined using the complement activation (CH50) test.  相似文献   

19.
Recent advances have led to conjugated polymer‐based photovoltaic devices with efficiencies rivaling amorphous silicon. Nevertheless, these devices become less efficient over time due to changes in active layer morphology, thereby hindering their commercialization. Copolymer additives are a promising approach toward stabilizing blend morphologies; however, little is known about the impact of copolymer sequence, composition, and concentration. Herein, the impact of these parameters is determined by synthesizing random, block, and gradient copolymers with a poly(3‐hexylthiophene) (P3HT) backbone and side‐chain fullerenes (phenyl‐C61‐butyric acid methyl ester (PC61BM)). These copolymers are evaluated as compatibilizers in photovoltaic devices with P3HT:PC61BM as the active layer. The random copolymer with 20 mol% fullerene side chains and at 8 wt% concentration in the blend gives the most stable morphologies. Devices containing the random copolymer also exhibit higher and more stable power conversion efficiencies than the control device. Combined, these studies point to the random copolymer as a promising new scaffold for stabilizing bulk heterojunction photovoltaics.  相似文献   

20.
A simple route for fabricating highly ordered organic–inorganic hybrid nanostructures, using polystyrene‐block‐poly(ethylene oxide) diblock copolymer (PS‐b‐PEO) thin films coupled with sol–gel chemistry, is presented. Hexagonally packed arrays of titania nanodomains were generated by one‐step spin‐coating from solutions containing a titania precursor and PS‐b‐PEO, where the precursor was selectively incorporated into the PEO domain. The PS‐b‐PEO template was subsequently removed by UV treatment, leaving behind a highly dense array of hexagonally packed titania dots. The size of the dots, as well as the lattice spacing of the array, could be fine‐tuned by simply controlling the relative amount of sol–gel precursor to PS‐b‐PEO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号