首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
内蒙古油砂抽提沥青的实验研究   总被引:1,自引:0,他引:1  
进行了热碱水抽提内蒙古油砂中沥青的实验研究。结果表明,最佳抽提条件为:碱液浓度0.3%,抽提温度90℃,碱液/油砂质量比1.5~2.0,搅拌速度75~100r/min,抽提时间20min。在抽提得到的粗沥青中加入质量分数为20%的石油醚(馏程60—90℃),于45℃下进行了进一步的脱砂处理。结果表明,砂粒与沥青基本分离,所得沥青中沥青质的质量分数达43.40%。  相似文献   

2.
采用不同溶剂作为萃取剂,对新疆油砂进行萃取实验,并对萃取工艺条件进行了优化。结果表明,以优选出的轻质石脑油中110~145℃馏分为萃取剂,选取粒径为20目的油砂颗粒,在剂砂比(萃取剂与油砂的质量比)为3∶1,萃取温度为60℃,萃取时间为20 min,搅拌转速为200 r/min的条件下,进行2级萃取,油砂沥青收率可达到95.7%。  相似文献   

3.
在实验室装置中,采用溶剂萃取及复合超声分离技术,于萃取剂/油砂(质量比)为0.50,水/油砂(质量比)为3.2,超声分离时间为30 min的最佳条件下,对油砂进行了萃取分离。以此为基础,进行了中试放大实验。结果表明:在实验室操作条件下,油砂出油率可达96%以上,水洗后的尾砂含油量可降至6.5 mg/g;在中试生产中,油砂中各馏分油的质量分数都很高,其中沥青高达15.76%,提炼出的总油质量分数高达28.36%;中试生产的油砂沥青(>400℃),除残留延度(10℃)外,其他性能均可满足50#道路沥青A级指标要求。  相似文献   

4.
采用甲苯抽提法对新疆油砂进行分离,并通过热重分析仪对油砂、油砂沥青、沥青四组分和泥沙进行了热解特性研究。结果表明:油砂热解过程可分为3个阶段,其中第2阶段为重要的产油区。在380~520℃,油砂沥青的热解失重速率最快,是沥青热解过程的主要失重区。油砂沥青四组分的饱和分最高失重速率为最快,峰值温度为最低;饱和分的生焦率为0,沥青质的生焦率为最高(达到29.1%)。油砂泥沙在热解过程中分为2个阶段,分别归因于表面残留的极少量有机质的热分解,以及方解石类固体矿物质的分解。  相似文献   

5.
内蒙古油砂热碱水洗分离实验研究   总被引:18,自引:0,他引:18  
严格 《油田化学》2005,22(4):375-377
在实验室考察了用热碱(NaOH)水抽提法从内蒙古油砂中分离油砂油的工艺务件。用Dean-Stark甲苯抽提法测得两个油砂样含油12.5%和13.6%.含水0.55%和0.65%。分离出的油砂油含饱和分8.2%、芳香分23.6%、肢质25.0%、沥青质41.3%,含88.31%C、9.97%H、5.09%O、0.69%N、0.93%S。考虑工业生产条件得到的分离工艺参数为:碱水、油砂质量比1.5:1~2:1;碱、水质量比0.2%~0.5%;温度95%;搅拌转速75~100r/min;抽提时间30min,油砂油回收率可达95.5%以上。推荐的最佳分离工艺条件为:碱水、油砂比2:1;碱。水比0.2%,温度95℃。搅拌转速80r/min,抽提时间30min。用Na2CO3代替NaOH使油砂油回收率有所下降。图2表5参2。  相似文献   

6.
采用半连续溶剂抽提法对加拿大油砂进行了提取分离试验,应用溶解度参数理论以及实验筛选出最佳抽提溶剂为重整汽油。综合考察了提取温度、溶剂流量、提取时间以及提取压力等工艺操作条件对油砂沥青提取的影响。结果表明,在提取温度80 ℃、溶剂流量60 mL/min、提取时间60 min、提取压力1.0 MPa的条件下,油砂沥青提取率达到92.74%。  相似文献   

7.
采用快速溶剂萃取技术提取油砂沥青,通过单因素试验和正交试验得出加压溶剂萃取技术的最佳工艺参数。研究结果表明,在高压条件下,混合适量硅藻土分散剂,快速溶剂萃取法提取油砂沥青比传统索氏抽提与费舍尔试验更有优势。利用正交试验获得快速溶剂萃取法提取油砂沥青的最佳工艺参数为:压力10 MPa,土砂比(硅藻土与油砂的体积比)2∶1,萃取温度160℃,循环次数5次,溶剂选择四氢呋喃,单次静态萃取时间12 min。  相似文献   

8.
以玉门风化油砂为研究对象,通过解离剂将沥青从砂粒剥离,利用聚结剂对水相中的沥青微滴聚结,实现了沥青、水、砂粒三相分离。考察了解离剂组成和聚结剂用量等工艺条件对风化油砂分离效果的影响。采用偏光显微镜和FTIR技术对风化油砂、尾砂及沥青试样进行了表征。实验结果表明,以Na OH、Na Cl和吐温80为解离剂,处理后尾砂的含油率低至0.2%;以聚丙烯酰胺为聚结剂,加入量为0.005 g/g时沥青收率为93.5%。提出了分离风化油砂的解离-聚结体系模型,即通过表面活性物质强化沥青乳化,通过碱剂的化学驱动力使"露头"油砂表面沥青剥离,以高分子聚结剂彻底回收分散态的风化油砂沥青。  相似文献   

9.
利用复合有机溶剂对新疆油润性油砂进行萃取实验,通过溶剂溶解度参数的运用选择了适合于萃取新疆油砂的可替代甲苯的复合有机溶剂。考察了溶剂油砂体积质量比、萃取时间、萃取温度、搅拌速度等因素对油砂原油回收率的影响。实验结果表明:运用正己烷-乙酸乙酯(乙酸乙酯体积分数为12.5%)复合溶剂对颗粒小于40目的油砂进行萃取,在萃取温度50℃、剂砂比2∶1(m L∶g)、萃取时间30 min、搅拌速率为500 r/min的条件下,油砂原油的回收率可达78%以上。  相似文献   

10.
利用溶剂抽提分离油砂沥青,比较了油砂沥青油的沸腾床加氢实验和焦化实验,以及油砂的干馏实验。结果表明,以甲苯为溶剂抽提分离油砂沥青,可使沥青油回收超过90%。油砂沥青油具有密度大、灰分高、盐含量高的特点,胶质沥青质质量分数超过90%。采用沸腾床加氢处理脱盐沥青油,可使其硫、残炭、镍、钒的脱除率分别达到7283%、6685%、9616%和9824%,胶质和沥青质的转化率分别为7353%和9863%,加氢产物是优质的深加工原料。采用焦化处理非脱盐沥青油,总液收6164%,焦炭产率2895%,资源相对有效利用率低。油砂直接干馏,沥青油总回收率只有7856%。从油砂沥青油的有效回收和利用上看,沸腾床加氢是最有效的手段。  相似文献   

11.
Oil sand processing by ultrasonic technique   总被引:1,自引:0,他引:1  
The kinetics of bitumen (asphalt), oil, and residual fuel oil extraction from oil sands by ultrasonic treatment has been studied. The influence of the working temperature of the process, characteristics of the separated components, fineness of the solid phase, and additive concentration on the extraction rate has been investigated. A schematic diagram of the installation for oil sands processing using an ultrasonic reactor is given. It is shown that ultrasonic devices could be an alternative to the presently used industrial equipment for bitumen and oil products extraction from oil-bearing rocks and oil sludge.  相似文献   

12.
1. Introduction Commercial recovery of bitumen from oil sands iscurrently achieved by means of water based separationprocesses. While most of these separation methods arebased on the Hot Water Extraction Process, the need toconserve energy has resulted …  相似文献   

13.
The Canadian oil sands deposits in northern Alberta contain about 1.3 trillion barrels of crude oil equivalent. The largest of the four major formations is found in the Athabasca region where bitumen is heterogeneously distributed throughout an unconsolidated mineral matrix. About one-tenth of the oil sands in this deposit is economically recoverable by conventional surface mining techniques.The Hot Water Extraction Process (HWEP) is used commercially to recover bitumen from surface mined oil sands ore. The viability of this process relies on the existence of a thin water film around each solid particle in the ore matrix. However, a completely water-wet mineral condition is not generally the case for oil reservoirs, including oil sands deposits. In the latter case, it has been shown that certain solid fractions are associated with significant amounts of toluene insoluble organic matter (TIOM), physically or chemically adsorbed onto particle surfaces. These fractions are generically described as ‘organic rich solids’ (ORS). In bitumen separation processes, the organic matter associated with various ORS fractions represents an impediment to optimum bitumen separation and upgrading. In this sense, these solids are considered to be ‘active’ relative to the ‘inactive’ water wetted quartz particles comprising the bulk of the oil sands ore. Preliminary results indicate that the ORS content of an ore appears to be a better predictor for ore processability than the traditional use of bitumen or fines (−44 μm) contents.Two types of ORS have received particular attention. The first is a coarser fraction, usually less than 44 μm but also occurring as particles greater than 100 μm in diameter. This material typically occurs as aggregates of smaller particles bound together by humic matter and precipitated minerals. During the bitumen separation process, these heavy aggregates carry any associated bitumen into the aqueous tailings, thus reducing overall bitumen recovery. The second important fraction comprises very thin, ultra-fine clay particles with a major dimension of <0.3 μm. These ultra-fine clays, with a surface coating of organic matter, remain with bitumen during the separation process. In bitumen upgrading, these solids may be entrained with volatile overheads and cause problems in downstream operations. This paper summarises the protocols developed to separate and characterise these intractable components from HWEP process streams and discusses their role in determining bitumen recovery and quality.  相似文献   

14.
油砂沥青油为高密度、高黏度、高金属含量、高残炭的劣质原料,采用沸腾床加氢催化剂,利用反应釜进行加氢处理,考察了反应温度和反应时间对其反应性能的影响,以寻求最佳的沸腾床加氢处理反应条件。实验结果表明,随着反应温度升高、反应时间增加,油砂沥青油的加氢生成油中Fe,Na,Ni,V含量和残炭逐渐降低,最佳反应条件为反应温度430 ℃、反应时间80min,在该条件下,Fe,Na,Ni,V的脱除率分别为99.97%,99.99%,98.11%,99.61%,残炭降低率为72.61%。利用沸腾床进行油砂沥青油的加氢处理,可以有效改善油品性质,满足深加工要求。  相似文献   

15.
Currently, more than half of the oil reserves (53.3%) in the world are in the form of restorable oils such as heavy oil, extra heavy oil, oil sand, tar sands, oil shale, and bitumen. Heavy oil is one of the petroleum oil varieties that contain long chain hydrocarbons. All types of heavy oils contain asphaltenes and thus are considered very dense substances. The asphaltenes are one of the most complex and heavy organic compounds present in the heavy oil. The heavy oil is defined as one having an American Petroleum Institute scale index equal or smaller than 20°. In conventional refining procedures, heavy oil poses many challenges. Recycling and re-refining are applied techniques for the processing of petroleum based heavy oils into reusable light oils such as gasoline and diesel fuel. In this regard, catalytic pyrolysis and thermal cracking are promising technologies for light oil production. The authors review the heavy oil upgrading processes and their associated challenges with ambition to find cost-effective ways to ensure a constant future fuel supply.  相似文献   

16.
柴达木盆地西部侏罗系油砂的发现及其意义   总被引:9,自引:0,他引:9  
最近在柴达木盆地西部阿尔金断裂南侧地面剖面上侏罗统地层中首次发现了厚约90m的油砂及大量裂缝沥青脉。通过对这些油砂和沥青的分析研究发现,它们与柴达木盆地西部第三系原油差别较大,与柴达木盆地东部侏罗系原油较相似但也有一定差异。野外地质调查发现柴达木盆地西北部发育大量侏罗系烃源岩,其生物标志物等特征与这些油砂和沥青相似,综合分析认为这些油砂和沥青脉可能来源于成熟的侏罗系源岩。这些油砂的发现对柴达木盆地西北部及阿尔金断裂沿线盆地的油气勘探具有重要意义。  相似文献   

17.
通过使用自制的ASP试剂从印尼油砂中回收沥青,研究了油砂沥青的分离条件。结果表明适宜的分离条件如下:混合温度80℃、混合时间40min、ASP试剂与油砂的质量比为4:10、浮选时间10min,在上述条件下,沥青回收率可达86%,尾砂中沥青残余率为6%。为了进一步降低尾砂的含油量,研究了尾砂中沥青含量与尾砂粒径的关系,结果表明:随着尾砂粒径的减小,尾砂的含油量降低。对尾砂研磨30min后,采用ASP试剂抽提法进一步处理,尾砂的含油量由5.47% 降到1.25%,符合排放要求。  相似文献   

18.
In Alberta, oil sands bitumen is utilized for synthetic crude oil (SCO) production by surface mining, bitumen extraction followed by primary (coking) and secondary (catalytic hydrotreating) upgrading processes. SCO is further refined in specially designed or slightly modified conventional refineries into transportation fuels. Oil sands tailings, composed of water, sands, silt, clay and residual bitumen, is produced as a byproduct of the bitumen extraction process. The tailings have poor consolidation and water release characteristics. For twenty years, significant research has been performed to improve the consolidation and water release characteristics of the tailings. Several processes were developed for the management of oil sands tailings, resulting in different recovered water characteristics, consolidation rates and consolidated solid characteristics. These processes may affect the performance of the overall plant operations. Apex Engineering Inc. (AEI) has been developing a process for the same purpose. In this process oil sands tailings are treated with Ca(OH)2 lime and CO2 and thickened using a suitable thickener. The combination of chemical treatment and the use of a thickener results in the release of process water in short retention times without accumulation of any ions in the recovered water. This makes it possible to recycle the recovered water, probably after a chemical treatment, as warm as possible, which improves the thermal efficiency of the extraction process. The AEI Process can be applied in many different fashions for the management of different fractions of the tailings effluent, depending on the overall plant operating priorities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号