首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
The B subunit of the vacuolar (H+)-ATPase (V-ATPase) has previously been shown to participate in nucleotide binding and to possess significant sequence homology with the alpha subunit of the mitochondrial F-ATPase, which forms the major portion of the noncatalytic nucleotide binding sites and contributes several residues to the catalytic sites of this complex. Based upon the recent x-ray structure of the mitochondrial F1 ATPase (Abrahams, J.P., Leslie, A.G., Lutter, R., and Walker, J.E. (1994) Nature 370,621-628), site-directed mutagenesis of the yeast VMA2 gene has been carried out in a strain containing a deletion of this gene. VMA2 encodes the yeast V-ATPase B subunit (Vma2p). Mutations at two residues postulated to be contributed by Vma2p to the catalytic site (R381S and Y352S) resulted in a complete loss of ATPase activity and proton transport, with the former having a partial effect on V-ATPase assembly. Interestingly, substitution of Phe for Tyr-352 had only minor effects on activity (15-30% inhibition), suggesting the requirement for an aromatic ring at this position. Alteration of Tyr-370, which is postulated to be near the adenine binding pocket at the noncatalytic sites, to Arg, Phe, or Ser caused a 30-50% inhibition of proton transport and ATPase activity, suggesting that an aromatic ring is not essential at this position. Finally, mutagenesis of residues in the region corresponding to the P-loop of the alpha subunit (H180K, H180G, H180D, N181V) also inhibited proton transport and ATPase activity by approximately 30-50%. None of the mutations in either the putative adenine binding pocket nor the P-loop region had any effect on the ability of Vma2p to correctly fold nor on the V-ATPase to correctly assemble. The significance of these results for the structure and function of the nucleotide binding sites on the B subunit is discussed.  相似文献   

2.
Site-directed mutants of eEF1A (formerly eEF-1alpha) were generated using a modification of a highly versatile yeast shuttle vector (Cavallius, J., Popkie, A. P., and Merrick, W. C. (1997) Biochim. Biophys. Acta 1350, 345-358). The nucleotide specificity sequence NKMD (residues number 153-156) was targeted for mutagenesis, and the following mutants were obtained: N153D (DKMD), N153T (TKMD), D156N (NKMN), D156W (NKMW), and the double mutant N153T,D156E (TKNE). All of the yeast strains containing the mutant eEF1As as the sole source of eEF1A were viable except for the N153D mutant. Most of the purified mutant eEF1As had specific activities in the poly(U)-directed synthesis of polyphenylalanine similar to wild type, although with a Km for GTP increased by 1-2 orders of magnitude. The mutants showed a reduced rate of GTP hydrolysis, and most displayed misincorporation rates greater than wild type. The mutant NKMW eEF1A showed unusual properties. The yeast strain was temperature sensitive for growth, although the purified protein was not. Second, this form of eEF1A was 10-fold more accurate in protein synthesis, and its rate of GTP hydrolysis was about 20% of wild type. In total, the wild-type protein contains the most optimal nucleotide specificity sequence, NKMD, and even subtle changes in this sequence have drastic consequences on eEF1A function in vitro or yeast viability.  相似文献   

3.
Prp20/Srm1, a homolog of the mammalian protein RCC1 in Saccharomyces cerevisiae, binds to double-stranded DNA (dsDNA) through a multicomponent complex in vitro. This dsDNA-binding capability of the Prp20 complex has been shown to be cell-cycle dependent; affinity for dsDNA is lost during DNA replication. By analyzing a number of temperature sensitive (ts) prp20 alleles produced in vivo and in vitro, as well as site-directed mutations in highly conserved positions in the imperfect repeats that make up the protein, we have determined a relationship between the residues at these positions, cell viability, and the dsDNA-binding abilities of the Prp20 complex. These data reveal that the essential residues for Prp20 function are located mainly in the second and the third repeats at the amino-terminus and the last two repeats, the seventh and eighth, at the carboxyl-terminus of Prp20. Carboxyl-terminal mutations in Prp20 differ from amino-terminal mutations in showing loss of dsDNA binding: their conditional lethal phenotype and the loss of dsDNA binding affinity are both suppressible by overproduction of Gsp1, a GTP-binding constituent of the Prp20 complex, homologous to the mammalian protein TC4/Ran. Although wild-type Prp20 does not bind to dsDNA on its own, two mutations in conserved residues were found that caused the isolated protein to bind dsDNA. These data imply that, in situ, the other components of the Prp20 complex regulate the conformation of Prp20 and thus its affinity for dsDNA. Gsp1 not only influences the dsDNA-binding ability of Prp20 but it also regulates other essential function(s) of the Prp20 complex. Overproduction of Gsp1 also suppresses the lethality of two conditional mutations in the penultimate carboxyl-terminal repeat of Prp20, even though these mutations do not eliminate the dsDNA binding activity of the Prp20 complex. Other site-directed mutants reveal that internal and carboxyl-terminal regions of Prp20 that lack homology to RCC1 are dispensable for dsDNA binding and growth.  相似文献   

4.
The functional characteristics of leukotriene C4 synthase (LTC4S), which specifically conjugates leukotriene A4 with GSH, were assessed by mutagenic analysis. Human LTC4S and the 5-lipoxygenase-activating protein share substantial amino acid identity and predicted secondary structure. The mutation of Arg-51 of LTC4S to Thr or Ile abolishes the enzyme function, whereas the mutation of Arg-51 to His or Lys provides a fully active recombinant protein. The mutations Y59F, Y97F, Y93F, N55A, V49F, and A52S increase the Km of the recombinant microsomal enzyme for GSH. The mutation Y93F also markedly reduces enzyme function and increases the optimum for pH-dependent activity. The deletion of the third hydrophobic domain with the carboxyl terminus abolishes the enzyme activity, and function is restored by the substitution of the third hydrophobic domain and carboxyl terminus of 5-lipoxygenase-activating protein for that of LTC4S. Mutations of C56S and C82V alone or together and the deletion of Lys-2 and Asp-3 of LTC4S do not alter enzyme function. The direct linkage of two LTC4S monomers by a 12-amino acid bridge provides an active dimer, and the same bridging of inactive R51I with a wild-type monomer creates an active pseudo-dimer with function similar to that of the wild-type enzyme. These results suggest that in the catalytic function of LTC4S, Arg-51 probably opens the epoxide ring and Tyr-93 provides the thiolate anion of GSH. Furthermore, the monomer has independent conjugation activity, and dimerization of LTC4S maintains the proper protein structure.  相似文献   

5.
Vitronectin (VN), a major cell adhesion protein, is found in plasma and in the extracellular matrix. At least three distinct cell surface receptors for vitronectin belonging to the integrin superfamily have been identified in normal and neoplastic cells. Many cell adhesion ligands, including vitronectin, contain an Arg-Gly-Asp (RGD) sequence mediating, in part, the ligand-receptor interaction. These ligands bind different integrins with varying specificity and affinity. The mechanism of receptor specificity remains controversial. To determine the role of the RGD sequence in receptor specificity, we amplified the cDNA for human vitronectin from a liver cDNA library and generated two separate mutants by utilizing site-directed mutagenesis resulting in aspartic acid (Asp47) to glutamic acid (Glu47) substitution and glycine (Gly46) to alanine (Ala46) substitution. The mammalian expression vector, pZEM229R, was used to transfect baby hamster kidney cells which secreted recombinant proteins into the supernatant. All recombinant proteins were isolated by heparin-agarose chromatography and tested for interaction with three known vitronectin receptors, namely, alpha IIIb beta 3 on thrombin-activated platelets, alpha v beta 3 on human umbilical vein endothelial cells and alpha v beta 5 on Panc-1 cells. Recombinant wild-type vitronectin behaved in a fashion similar to plasma-derived vitronectin. Both the RGE-VN and RAD-VN recombinant mutant proteins showed complete loss of cell adhesion activity, regardless of the receptor. These results confirm the essential and central role of the RGD sequence in vitronectin for cell adhesion. This expression system allows further structure/function analysis of vitronectin.  相似文献   

6.
Regulation of the branched chain alpha-ketoacid dehydrogenase complex, the rate-limiting enzyme of branched chain amino acid catabolism, involves phosphorylation of 2 amino acid residues (site 1, serine 293; site 2, serine 303). To directly assess the roles played by these sites, site-directed mutagenesis was used to convert these serines to glutamates and/or alanines. Functional E1 heterotetramers were expressed in Escherichia coli carrying genes for E1 alpha and E1 beta under control of separate T7 promoters in a dicistronic vector. Mutation of phosphorylation site 1 serine to glutamate inactivated E1 activity, i.e. mimicked the effect of phosphorylation of site 1. Replacement of the site 1 serine with alanine greatly increased Km for the alpha-ketoacid substrate but had no effect on maximum velocity. The site 1 serine to alanine mutant was phosphorylated at site 2, but phosphorylation had no effect upon enzyme activity. Mutation of site 2 serine to either glutamate or alanine also had no effect upon enzyme activity, but phosphorylation of these proteins at site 1 inhibited enzyme activity. E1 mutated to change both phosphorylation site serines to glutamates was without enzyme activity. The binding affinity of E1 to the E2 core was not affected by mutation of the phosphorylation sites to glutamates, suggesting no gross perturbation of the association of E1 with the E2 core. The results provide direct evidence that a negative charge at phosphorylation site 1 is responsible for kinase-mediated inactivation of E1. Site 2 is silent with respect to regulation of activity by phosphorylation.  相似文献   

7.
8.
Rubredoxins contain a single non-heme iron atom coordinated by four cysteines. This iron is redox active and confers a role to these proteins in electron transfer chains. The structural features responsible for setting the values of the reduction potential and of the electron self-exchange rate constant have been probed by site-directed mutagenesis. Replacements of the highly conserved residues in positions 8, 10, and 11 (valine, glycine, and tyrosine, respectively) all lead to shifts of the reduction potential, up to 75 mV. These cannot be explained by simple considerations about the physicochemical properties of the substituting side chains but rather indicate that the value of the reduction potential is finely tuned by a variety of interactions. In contrast, the electron self exchange rate constant measured by nuclear magnetic resonance does not vary much, except when a charged residue is included in position 8 or 10, at the surface of the protein closest to the iron atom. Analysis of the data with a model for electrostatic interactions, including both monopolar and dipolar terms, indicates that the presence of a charge in this region not only increases the repulsion between molecules but also affects the electron transfer efficiency of the bimolecular complexes formed. The studies presented constitute a first step toward probing the structural elements modulating the reactivity of the FeS4 unit in a protein and defining the electron transfer active site(s) of rubredoxin.  相似文献   

9.
10.
The amino acid residues involved in the metal-binding site in the iron-containing dehydrogenase family were characterized by the site-directed mutagenesis of selected candidate residues of propanediol oxidoreductase from Escherichia coli. Based on the findings that mutations H263R, H267A and H277A resulted in iron-deficient propanediol oxidoreductases without catalytic activity, we identified three conserved His residues as iron ligands, which also bind zinc. The Cys362, a residue highly conserved among these dehydrogenases, was considered another possible ligand by comparison with the sequences of the medium-chain dehydrogenases. Mutation of Cys362 to Ile, resulted in an active enzyme that was still able to bind iron, with minor changes in the Km values and decreased thermal stability. Furthermore, in an attempt to produce an enzyme specific only for the zinc ion, three mutations were designed to mimic the catalytic zinc-binding site of the medium-chain dehydrogenases: (1) V262C produced an enzyme with altered kinetic parameters which nevertheless retained a significant ability to bind both metals, (2) the double mutant V262C-M265D was inactive and too unstable to allow purification, and (3) the insertion of a cysteine at position 263 resulted in a catalytically inactive enzyme without iron-binding capacity, while retaining the ability to bind zinc. This mutation could represent a conceivable model of one of the steps in the evolution from iron to zinc-dependent dehydrogenases.  相似文献   

11.
Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) encodes a 143-kDa protein (P143) required for viral DNA synthesis and involved in host range determination. The predicted amino acid sequence of P143 contains seven motifs (I, Ia, II-VI) shared with a superfamily of helicases involved in the unwinding of duplex nucleic acids; a putative DNA binding motif; a putative nuclear localization signal (NLS); and a demonstrated host range motif. In this study, the functional significance of these conserved P143 motifs was examined by site-specific mutation resulting in amino acid substitutions of conserved residues within each of them. An in vivo complementation replication assay was developed and each mutated P143 protein expressed from a transfected plasmid was tested for its ability to complement the replication-negative ts8 baculovirus mutant for the amplification of an origin-containing plasmid. Mutations in the helicase motifs I, Ia, and II and in a potential helix-turn-helix motif abolished the ability of P143 to complement the ts8 defect in DNA replication, suggesting that these conserved amino acid residues may be essential for the replication function of the protein. In contrast, mutation of conserved amino acid residues in the helicase motifs IV, V, and VI did not affect the ability of the P143 proteins to complement the replication defect of ts8. A mutation in motif III caused a reduction in the replication function of P143. Deletion of Gly552 in the host range region eliminated the replication function of P143. Mutations within a putative NLS had no effect on the ability of P143 to support DNA replication, suggesting that these residues are nonessential and that the putative P143 NLS sequence may not be responsible for the nuclear localization of the protein. The transient complementation system used in this study provides a simple method for functional analysis of essential baculovirus genes in infected cell cultures.  相似文献   

12.
OBJECTIVE: To define the normal cortisol response to the Short Synacthen Test using four different cortisol immunoassays and to assess the implications for the investigation of hypothalamic-pituitary disorders. DESIGN AND PATIENTS: The cortisol response to 250 micrograms im ACTH1-24 (Synacthen, Ciba Geigy) in 100 healthy volunteers using four different cortisol immunoassays has been measured. In 44 newly diagnosed and untreated patients with pituitary disease, basal and 30 minute post-ACTH cortisol results were also determined using the four immunoassays. RESULTS: The distribution of cortisol results at all time points and for all methods were non-Gaussian and significant differences in the absolute values of the 5th-95th percentiles were found between methods (P < 0.01). At 30 min post-Synacthen in normals the 5th percentile of the cortisol response ranged from 510 to 626 nmol/l with the different methods. Similarly the relationship between assay results differed at different time points. No effect of age on the cortisol response was found but for stimulated cortisol values and the incremental responses females showed significantly higher responses than males (P < 0.05) for most methods. Although there was a significant positive linear correlation (P < 0.001) between stimulated and basal cortisol values for all methods, no significant relationship was found between the incremental response and basal cortisol values. In the pituitary disease patients basal and 30 minute post-ACTH cortisol results were significantly lower (P < 0.05 and < 0.001) than the control group using the same cortisol assay. When the results were compared to the 5th percentile of the gender and assay specific control group 33.3% of male and 17.4% of female patients failed the Synacthen test at 30 min. CONCLUSIONS: The definition of the 'normal' response to Synacthen should be both gender and method related at all time points. The data suggest that up to one-third of untreated patients with pituitary disease may have subtle defects in the hypothalamic-pituitary-adrenal axis.  相似文献   

13.
Haloalkane dehalogenase catalyzes the hydrolytic cleavage of carbon-halogen bonds in a broad range of halogenated aliphatic compounds. The X-ray structure suggests that Asp124, which is located close to an internal cavity, carries out a nucleophilic attack on the C alpha of the substrate, releasing the halogen. To study the mechanism of hydrolysis, this aspartate residue was mutated to alanine, glycine, or glutamate. The mutant enzymes showed no activity toward 1,2-dichloroethane and 1,2-dibromoethane. Incubation of purified wild-type dehalogenase with 1,2-dichloroethane in the presence of H2(18)O resulted in the incorporation of 18O in 2-chloroethanol and in the carboxylate group of Asp124. This shows that the reaction proceeds by covalent catalysis with the formation of an alkyl-enzyme intermediate that is hydrolyzed by attack of solvent water on the carbonyl carbon of Asp124. On the basis of amino acid sequence similarity between haloalkane dehalogenase and epoxide hydrolases, it is proposed that a conserved aspartate residue is also involved in covalent catalysis by the latter enzymes.  相似文献   

14.
A high-performance liquid chromatography (HPLC) method to determine the most important cellular thiols [reduced glutathione (GSH), cysteine, gamma-glutamylcysteine and cysteinylglycine] is described. Separation relies upon isocratic ion-pairing reversed-phase chromatography and detection is operated by spectrofluorimetry coupled with post-column derivatization reactions using either N-(1-pyrenyl)maleimide (NPM) or ortho-phthalaldehyde (OPA). When OPA is used without co-reagent, only GSH and gamma-glutamylcysteine are detected (heterobifunctional reaction). However, either the OPA reaction in the presence of glycine in the mobile phase (thiol-selective reaction) or NPM allows the detection of all the cited thiols. The HPLC system has been validated as concerning linearity, accuracy and precision. The low detection limits reached (in the pmol range for each thiol injected) allow the screening and the quantification of thiols (as NPM derivatives) in V79cl and V79HGGT cells as well as the measurement of two cytosolic enzymes related to the glutathione synthesis, using the heterobifunctional OPA reaction.  相似文献   

15.
Infection of rats with the enteric, lumen-dwelling tapeworm Hymenolepis diminuta causes electric changes in host intestinal smooth muscle and decreased luminal transit. The mechanisms that stimulate host intestinal alterations during this nontissue invasive infection may include the tapeworm's biomass, its diurnal migratory behavior, a host immune-mediated response, or direct parasite stimulation of host motor activity. In vivo intestinal myoelectric activity was monitored to evaluate the following: (1) that reinfection with H. diminuta is influenced by host immune regulation and (2) that administration of tapeworm fractions to never-before-infected rats initiates an alteration of enteric smooth muscle activity. To address the first hypothesis, we determined that altered intestinal myoelectric activity patterns were no different and did not occur earlier in a second infection with H. diminuta than in a primary infection. The lack of either a change in myoelectric pattern or an earlier onset of intestinal myoelectric changes indicates that tapeworm-induced myoelectric activity is not anamnestically stimulated by host immunomodulatory mechanisms. Consistent with the second hypothesis, administration of either H. diminuta carcass homogenate or tegument-enriched fractions directly into the intestinal lumen of tapeworm-naive rats initiated myoelectric patterns previously characteristic of chronic H. diminuta infection. Additionally, the appearance of characteristic nonmigrating myoelectric patterns in uninfected rats administered tapeworm fractions indicates that a substance from H. diminuta acts as the triggering signal molecule for intestinal myoelectric alterations. These findings also indicate that neither the tapeworm's biomass nor its diurnal movement is required for initiation of H. diminuta-altered myoelectric patterns. We have shown that H. diminuta possess a signal molecule(s) that alters host enteric electric activity, and we suggest that these alterations may play an important role in the symbiotic rat-tapeworm interrelationship.  相似文献   

16.
The site-directed mutagenesis of a number of proposed active site residues of 5-enolpyruvyl shikimate-3-phosphate (EPSP) synthase is reported. Several of these mutations resulted in complete loss of enzyme activity indicating that these residues are probably involved with catalysis, notably K22R, K411R, D384A, R27A, R100A, and D242A. Of those, K22R, R27A, and D384A did not bind either the substrate shikimate-3-phosphate (S3P) or glyphosate (GLP). The K411R and D242A mutants bind S3P only in the presence of GLP. The kinetic characterization of mutants R100K, K340R, and E418A, which retain activity, is reported. Of those, R100K and K340R do not accumulate enzyme intermediate of enzyme-bound product under equilibrium conditions. These residues, while not essential for catalysis, are most likely important for substrate binding. All of the mutants are shown to be correctly folded by NMR spectroscopy.  相似文献   

17.
Osteopontin (OPN) is a secreted calcium-binding phosphoprotein produced in a variety of normal and pathological contexts, including tissue mineralization and cancer. OPN contains a conserved RGD (arg-gly-asp) amino acid sequence that has been implicated in binding of OPN to cell surface integrins. To determine whether the RGD sequence in OPN is required for adhesive and chemotactic functions, we have introduced two site-directed mutations in the RGD site of the mouse OPN cDNA, in which the RGD sequence was either deleted or mutated to RGE (arg-gly-glu). In order to test the effect of these mutations on OPN function, we expressed control and mutated mouse OPN in E. coli as recombinant glutathione-S-transferase (GST)-OPN fusion proteins. Control mouse GST-OPN was functional in cell adhesion assays, supporting attachment and spreading of mouse (malignant PAP2 ras-transformed NIH 3T3, and, to a lesser extent, normal NIH 3T3 fibroblasts) and human (MDA-MB-435 breast cancer, and normal gingival fibroblast) cells. In contrast, neither of the RGD-mutated OPN proteins ("delRGD" or "RGE") supported adhesion of any of the cell lines, even when used at high concentrations or for long assay times. GRGDS (gly-arg-gly-asp-ser) peptides inhibited cell adhesion to intact GST-OPN, as well as to fibronectin and vitronectin. In chemotaxis assays, GST-OPN promoted directed cell migration of both malignant (PAP2, MDA-MB-435) and normal (gingival fibroblast, and NIH 3T3) cells, while RGD-mutated OPN proteins did not. Together these results suggest that the conserved RGD sequence in OPN is required for the majority of the protein's cell attachment and migration-stimulating functions.  相似文献   

18.
L-Lactate monooxygenase (LMO) from Mycobacterium smegmatis was mutated at glycine 99 to alanine, and the properties of the resulting mutant (referred to as G99A) were studied. Mutant G99A of LMO was designed to test the postulate that the smaller glycine residue in the vicinity of the alpha-carbon methyl group of lactate in wild-type LMO has less steric hindrance, leading to the retention and oxidative decarboxylation of pyruvate in the active site, a unique property of LMO in contrast to other members of the FMN-dependent oxidase/dehydrogenase family. G99A has been shown to be readily reduced by L-lactate at a rate similar to that of the wild-type enzyme. The binding of pyruvate to reduced G99A is 4-fold weaker than that to the wild-type enzyme. A dramatic change of this mutation is that G99A has a much lower oxygen reactivity than the wild-type enzyme. Pyruvate-bound reduced G99A reacts with O2 at a rate approximately 10(5)-fold slower than the wild-type enzyme, and free reduced G99A reacts with O2 at a rate approximately 100-fold slower than the wild-type enzyme. Due to the very low oxygen reactivity of the pyruvate-bound reduced enzyme, G99A has been shown to catalyze the oxidation of L-lactate to pyruvate and hydrogen peroxide instead of acetate, carbon dioxide, and water, the normal decarboxylation products of pyruvate and hydrogen peroxide. Thus, the mutation alters the enzyme from its L-lactate monooxygenase activity to L-lactate oxidase activity. However, compared with L-lactate oxidase, G99A has a much lower reactivity toward oxygen. Our results also reveal that the small steric change around N-5 of the flavin causes a profound change in the electronic distribution in the catalytic cavity of the enzyme and imply that electrostatic interactions in the active site provide an important factor for control of O2 reactivity.  相似文献   

19.
Telomerase is an RNA-directed DNA polymerase, composed of RNA and protein subunits, that replicates the telomere ends of linear eukaryotic chromosomes. Using a genetic strategy described here, we identify the product of the EST2 gene, Est2p, as a subunit of telomerase in the yeast Saccharomyces cerevisiae. Est2p is required for enzyme catalysis, as mutations in EST2 were found to result in the absence of telomerase activity. Immunochemical experiments show that Est2p is an integral subunit of the telomerase enzyme. Critical catalytic residues present in RNA-directed DNA polymerases are conserved in Est2p; mutation of one such residue abolishes telomerase activity, suggesting a direct catalytic role for Est2p.  相似文献   

20.
OBJECTIVE: To determine the utility of the pressure-flow studies in the diagnosis of voiding dysfunction in women. METHODS: A case-control study was conducted on 80 women. These subjects were divided into two groups: 24 controls with a maximum flow percentile greater than or equal to 50 and no residual volume, and 56 cases with a maximum flow percentile less than or equal to 10. The clinically and statistically significant parameters of the pressure-flow study were entered into a multiple regression logistic equation as explanation variables of voiding dysfunction. RESULTS: The clinical variables that influenced voiding dysfunction were age and the presence of stress urinary incontinence. The urethral resistance average (URA) was found to be the only significant urodynamic parameter. Patients with stress urinary incontinence showed a lower probability of voiding dysfunction. Age and URA directly correlated with the probability of voiding dysfunction. CONCLUSIONS: The URA was found to be the only significant urodynamic parameter. The contractility parameters [power at maximum flow (Pw) and maximum power per bladder unit surface (Wmax)] were not found to be useful as detrusor contractility index in women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号