首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
叶蜡石、高岭土是玻璃纤维行业生产最主要原料。随着玻璃纤维行业的发展,其用量每年大幅度上升,因此对于叶蜡石质量要求越来越高。传统的湿化学方法已经很难满足要求。本文阐述了采用熔融制样x射线荧光光谱法测定叶蜡石、高岭土的SiO2、Al2O3、Fe2O3、TiO2、K2O、Na2O、CaO、MgO、S这9种成分的含量,所得结果与化学分析结果相符,同时采用荧光光谱法更为迅速快捷,是实际生产中的化学成分分析的一种有效方法。  相似文献   

2.
利用高温显微镜研究E玻璃单种原料及配合料的熔化温度,以及在整个熔化过程的反应情况,测定了玻璃的润湿角并初步研究了玻璃中的成分对润湿角的影响。结果表明:石英粉、叶蜡石、高岭土的熔点均高于1600℃;萤石、元明粉的熔点分别为1213℃、890℃:当配合料中硼钙石的含量超过8%时,在360℃左右会发生爆料现象。  相似文献   

3.
叶蜡石矿又称“蜡石”.蜡石是日文汉字名称、英译名为“Roseki”,因呈致密块状产出,有滑感,具蜡状光泽,状如蜡状岩,故名.我国叶蜡石矿分布广泛,开采历史悠久,其主要产区浙江青田、上虞、临海、福建福州、闽清、福清、内蒙巴林右旗、安徽庐江等地.矿床赋存于侏罗纪和白恶纪地层内,多为酸性和中性火山岩经热液蚀变而成.它主要矿物成分是叶蜡石、高岭石族矿物(地开石、高岭石等)、石英,伴生矿物为绢云母、一水硬铝石、明矾石、刚玉、红柱石等.其化学成份特征是富含SiO_2和Al_2O_3.它在硅酸盐工业中有广泛的用途,是制造耐火材料、陶瓷、玻璃纤维、白水泥的重要原料.  相似文献   

4.
白泡石作为玻璃纤维拉丝坩埚炉体材料是比较成功的,但加工白泡石板材的设备还无定型产品,各厂家都在探索和自制。我厂于1989年6月自行设计制造成功一台白泡石立式切割带锯,十个月生产实践证明,效果良好。一、结构及传动布置该机采用立武结构,印锯框及锯片立式安装。锯片由间隔块定位及支承,用螺钉顶紧。锯框垂直上下运动,其运动轨道  相似文献   

5.
在玻璃纤维生产中,经常需要大量的耐火材料来砌建各类窑炉。耐火材料的种类繁多,要求的规格、形状也不一样,因此使用时常须进行机械加工,目前代铂炉广泛采用的白泡石为天然矿石,更是必须加工。我院加工白泡石,过去用的是单片金刚砂锯,往复机构是摆动式的。用它锯切白泡石,速度慢,质量差,效率低,加工成本高,同时需要消耗大量钢材。例如加工一片切削面为400×600毫米的白泡石,加工工时需要14小时,耗用碳化硅金刚砂8公斤,钢材3.3公斤,而且锯切表面凸凹不平,质量很差,还需进行磨削。基于以上缺点和大量加工的需要,我们试制了一台多片往复金钢砂锯,外形结构如图1:  相似文献   

6.
通过在陶瓷坯体配方中,选用325目和1250目两种不同粒径的石英粉和两种不同白度的高岭土原料进行试验,分析两种粒径石英粉对陶瓷坯体白度的影响。结果显示:(1)添加325目的石英粉的坯体白度高于添加1250目石英粉的坯体白度;(2)白度相对较低的高岭土,其陶瓷配方白度更容易受到石英粒径大小的影响。  相似文献   

7.
舒锋 《玻璃纤维》2021,(4):39-41
对我国叶蜡石资源储量、分布特征、现状、矿石特性等作了简要概述,分析了我国玻璃纤维产业近十年的发展情况,介绍了叶蜡石在玻璃纤维行业中的应用现状,并对我国叶蜡石在玻璃纤维行业的发展趋势作出展望,提出了多矿点配矿、加强叶蜡石选矿除铁工艺、建立专业化标准化玻纤原料生产基地的发展建议.  相似文献   

8.
用静态浸泡法对电熔石英砖、天然白泡石、烧结纯刚玉砖、锆刚玉砖和锆英石砖五种耐火材料在玻璃液中的侵蚀情况进行了试验,从而确认刚玉砖适合于在耐辐照电绝缘玻璃纤维的生产中用作炉衬耐火材料.  相似文献   

9.
我厂中碱和无碱代铂炉的砖材一直使用四川北碚的自泡石。质量虽有波动,一般还能使用。但今年进厂的白泡石中,我们发现有一种不能使用。这种白泡石从表面看,颜色青绿,炉体中混入一块这样的石材,即会大量出现断头,使拉丝无法进行。这种白泡石的化学组成与其他颜色白泡石对比如下:  相似文献   

10.
我国玻纤用叶蜡石和高岭土开发现状   总被引:2,自引:0,他引:2  
叶蜡石是我国E玻璃纤维生产的主要原料.主要矿区在东南沿海的浙江、福建两省、目前已有三家专有矿粉厂加工生产,另有桐乡巨石、泰山玻纤集团自己的石粉加工厂,足可满足全国玻纤用量,2005年再扩展到60万t玻纤产量也能保证供给,而且还有正在开发的高岭土粉准备为玻纤生产服务.关键是各矿粉厂、玻纤厂如何选择优质叶蜡石粉保证长期、稳定的供贷渠道,以及如何注意矿粉的合理搭配使用,保证池窑拉丝的正常进行.  相似文献   

11.
China clay (kaolin) was progressively replaced by pyrophyllite in a conventional porcelain mix. Addition of 5% pyrophyllite as a replacement of china clay improved the fired strength by about 24% compared to that of the conventional body fired at 1300 °C. Percentage of mullite was found to increase in the fired specimens when kaolinite was progressively replaced by pyrophyllite. However, beyond 7.5% pyrophyllite addition, amorphous SiO2 released from pyrophyllite dehydroxylate inhibited further recrystallization of mullite. There was very insignificant change in the phase compositions with mixes having pyrophyllite content higher than 7.5%. Entire phenomenon has been explained on the basis of structural reorganization of pyrophyllite during dehydroxylation. Presence of large amount of undissolved quartz of smaller size as well as isolated pores in the microstructures of specimens containing pyrophyllite more than 7.5% are assumed to hinder the propagation of crack and thereby improving the mechanical properties. The size and shape of mullite crystals is to a large extent controlled by the fluidity of the liquid matrix from which they grow and this is again a function of temperature and composition.  相似文献   

12.
China clay (Kaolin) and quartz in the ratio of 1:2 was progressively replaced by pyrophyllite in a conventional porcelain mix. Addition of 15% pyrophyllite as a replacement of a combination of china clay and quartz decreased the linear shrinkage by 5.03% while fired strength was improved by about 31.5% compared to that of the conventional body fired at 1300 °C. Incorporation of pyrophyllite beyond 15% resulted in early vitrification of porcelain composition, although in lower proportion the effect is not so significant. Percentage of mullite was found to increase in the fired specimens even when kaolinite was progressively replaced by pyrophyllite. However, beyond 22.5% pyrophyllite addition, there occurred large volume of glass formation. Presence of large volume of glassy phase as well as formation of large pores of various shapes resulted in deterioration in ceramic properties. The size and shape of mullite crystals is to a large extent controlled by the fluidity of the liquid matrix from which they grow and this is again a function of temperature and composition.  相似文献   

13.
Quartz was progressively replaced by pyrophyllite in a conventional porcelain mix with a composition of 50% clay, 25% quartz and 25% feldspar. The addition resulted in early vitrification and decreased thermal expansion of the sintered specimen. Addition of up to 15% pyrophyllite decreased the fired shrinkage by 6% and improved the fired strength by around 29% compared to the standard body. The gradual increase in flexural strength with incorporation of pyrophyllite was primarily due to the elimination of stresses in the structure with a decreasing quartz content as well as to the increasing amount of secondary mullite distributed throughout the matrix forming an interlocking network. However, the firing temperature and the generation of the correct amount of properly sized mullite needles are vital in achieving the desired strength. Pyrophyllite was found to dissolve in the melt in preference to quartz. Beyond the optimum proportion of pyrophyllite, a large volume of glass formed as well as large elongated pores distributed in the matrix resulting in deterioration of mechanical properties.  相似文献   

14.
通过实验研究了叶蜡石粒度对玻璃熔制的影响。研究结果表明:在无法控制超细粉质量分数的生产工艺下,叶蜡石粒度并非越细越好,当粒度做到325目全通时反而会导致玻璃熔化和澄清质量变差。叶蜡石超细粉的质量分数应控制在合理的范围内,大量超细粉的存在不利于玻璃的熔化和澄清,但少量超细粉的存在并不损害玻璃的熔制。  相似文献   

15.
在生产工艺相同的前提下,陶瓷材料抵抗变形的能力本质上取决于制品的化学组成、矿物组成和显微结构。瓷质卫生陶瓷自身高液相含量决定了其高变形的固有特性,始终无法从根本上解决制品变形大的问题。通过引入适量煅烧高岭土,增加莫来石、石英等晶相含量,减少玻璃相含量,降低其高温塑性形变,实现精陶质卫生陶瓷低变形特性,并得出精陶质卫生陶瓷坯体配方适宜组成。XRD研究发现实验坯体莫来石、石英等晶相显著增加;而SEM观察实验坯体的气孔率高,玻璃相减少,因而相应的变形很小。采用实验最优配方的坯体变形度小于7mm,远远低于瓷质卫生陶瓷的变形度(20~30mm),完全能够满足制造极高规整度、大尺寸卫生陶瓷制品的要求。  相似文献   

16.
测定分析了茂名高岭土晶相和化学组成,以球磨茂名高岭土为原料,采用原位晶化法制备了FCC催化剂,研究了所制备催化剂的特性.结果表明茂名高岭上的Na<,2>O含量较高,但K<<2>O含量较低,碱金属总量(Na<,2>O+K<,2>O)与普通商用对比高岭土相当;晶相高岭石含量为85%,并伴有极少量的叶蜡石;球磨茂名高岭土制备...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号