首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The emission and the excitation spectra of GdPO4 : Eu^3+ and GdBO3: Eu^3 + prepared by solid state reaction method were investigated using the synchrotron radiation source of SUPERLUMI station of HASYLAB. The energy transfer between Gd^3+ and Eu^3+ was discussed with the probability of quantum cutting process. In the excitation spectra monitoring the red emission from Eu^3+ , the distinct lines corresponding to the intraconfigurational 4f-4f transitions from Gd^3+ were observed for both samples, indicating an efficient energy transfer from host Gd^3+ ions to the doped Eu^3+ ions. The efficient energy transfer is necessary for the quantum cutting process based on the two-step energy transfer from Gd^3+ to Eu^3+ . However, the overlapping of the lines corresponding to Gd^3+ :^8S7/2→^6GJ and the broad excitation band (180 - 270 nm) due to Eu^3+- O^2- charge transfer states (CTS) around 200 nm cause excitation energy on ^6GJ levels to dissipate into CTS by direct energy transfer, unfavorable to the cross relaxation energy transfer between Gd^3+ and Eu^3+, thus unfavorable to the quantum cutting process. With the help of the general rules governing the energy positions of Eu^3+-O^2- :CTS, the suggestions concerning searching suitable oxide hosts for Gd^3+-Eu^3+ quantum cutting were made.  相似文献   

2.
A type of dysprosium-doped ZnO (ZnO:Dy) nanopowder was synthesized by high temperature calcinations. XRD was used to analyze the structure. Photoluminescence spectra were used to study the optical characteristic. PL of ZnO:Dy shows two different spectra which are broad band resulted from the defect of Dy in ZnO and sharp lines from the 4f→4f transition of isolated Dy^3 + luminescence center. The emission and excitation spectra depend on the excitation wavelength and the concentration of Dy^3+ . The broad bands with peaks at 600 and 760 nm are attributed to the recombination from an electron of the defect Dy in ZnO to a hole in VB.  相似文献   

3.
New blue luminescence glass-ceramic samples were prepared in air by annealing of the Eu^3+-doped Li2O-BaO-B2O3 glass. The as-made glass samples only showed the sharp emission peaks assigned to the transitions of 5^D0-7^Fj (J=0, 1, 2, 3, 4) of Eu^3+ ions. The glass-ceramic samples gave a strong and broad emission band peaking at about 382 nm ascribed to the 5d-4f transition of Eu^2+ ions. The optical properties such as excitation and emission spectra, and the decay time of the Eu^2+ ions were investigated in the glasses or the glass-ceramics samples. The X-ray diffraction pattern showed that LiBan9O15 might be demonstrated to be the crystallites in the glass-ceramic, which contributed to the blue luminescence. SEM micrograph was investigated on the glass-ceramic samples obtained by crystallization of the glass matrix resulting in a mixture of poly-crystals.  相似文献   

4.
The luminescent properties of Eu^3+doped Ca2SiO4 red phosphors synthesized by the flux fusion reaction method were investigated. It was found that the excitation spectrum included two regions: the weak excitation band below 325 nm and strong narrow peaks above 325 nm. The main peak of the excitation band was located at 400 nm. The peaks located at 290 nm were assigned to the combination of the charge transfer transition of O-Eu, peaks above 325 nm (325, 385, 400, 470, 511, and 539 nm) were assigned to the f-f transitions of Eu^3+. The emission spectrum was dominated by the red peak located at 612 nm due to the electric dipole transition of ^5D0-^7F2. In addition, the effects of the Eu^3+ content and charge compensators of Li^+, Na^+, K^+, and Cl^- ions on the emission intensity were investigated. The experiment results suggested that the strongest emission was obtained when the concentration of the Eu^3+ ions was 0.3 mol^-1, and Li^+ ions gave the best improvement to enhance the emission intensity. Ca2SiO4:Eu^3+, Li^+ was thus suitable for low-cost trichromatic white light emitting diodes (WLED) based on UV InGaN chip.  相似文献   

5.
After trace Sm^3+ ions and Gd^3+ ions doping, the emission intensity of red phosphors Y2O2S: Eu^3 + was enhanced and the voltage character (relation between emission intensity and excitation voltage) was improved while the other properties of physics and chemistry were not changed. The origins of enhancement and improvement are discussed. Probably the distortion and the defect of crystals are decreased by the substitution of Gd^3+ for Y^3+ instead of Eu^3+ for Y^3+ , and thus the Eu^3+ crystal field is improved, and radiationless process and energy loss resulted from crystal defect are weakened, which leads to increased luminescence intensity and voltage character improvement. The overlapping fluorescent spectra of Y2O2S: Sm^3+ emission and Y2O2S:Eu^3+ excitation as well as Eu^3 + excitation spectra transitions spectra lead to energy transfer from Sm^3 + sensitization of Sm^3+ ions fectively. containing Sm^3+ excitation the possibility of resonance ions to Eu^3+ ions, and the to Eu^3+ ions is achieved effectively.  相似文献   

6.
Y2O2S:Sm^3+, Mg^2+, Ti^4+ phosphor was synthesized by co-precipitation method. The crystalline structure of all synthesized phosphors was investigated by XRD. The result showed that all synthesized phosphors had a hexagonal crystal structure, which was the same as Y2O2S. The emission spectrum and excitation spectrum were measured, and the effect of Sm^3 + molar ratio on the spectra was discussed. The emission spectra of the phosphors showed three emission peaks due to typical transitions of Sm^3 + (4G5/2→6HJ ,J = 5/2, 7/2, 9/2), and the emission peaks at 606 nm was stronger than others. With the increase of Sm^3 + molar ratio, the emission intensity was strengthened. The excitation peaks were ascribed to the representative energy transition 4f→4f of Ti^4+ phosphor prepared by co-precipitation method was Sm^3+ ions. The results indicated that the Y2O2S : Sm^3+ , Mg^2+ , an efficient long afterglow phosphor.  相似文献   

7.
The new phosphor calcium magnesium chlorosilicate, codoped with Eu^2+ and Dy^3+, was synthesized with the help of the high temperature solid state reaction in reducing atmosphere. The excitation and emission spectra were very similar to that of Ca8Mg(SiO4)4Cl2 :Eu^2+, and the Dy^3+ concentration influenced the emission intensity of this phosphor. The intensity of Eu^2+ and Dy^3+ codoped CMSC was stronger than that of Eu^2+ singly doped CMSC. The emission spectrum of the Dy^3+ ion overlapped the absorption band of the Eu^2+ ion, indicating that an energy transfer from Dy^3+ to Eu^2+ took place in CMSC:Eu^2+, Dy^3+ phosphor. The mechanism of the energy transfer from Dy^3+ tO Eu^2+, in this phosphor, might be resonant energy transfer.  相似文献   

8.
Crystals of LiKGdF5:Er^3 , Tb^3 grown by the hydrothermal synthesis technique with concentrations of 2% and 0.4% were analysed. By using site selective excitation measured at low temperature, luminescence and excitation spectra from Er^3 and Tb^3 ions embedded in LiKGdF5 were clearly separated. The lifetimes of the emitting levels ^4S3/2 of Er^3 and ^5D4 of Tb^3 were also determined. Following the site selective spectroscopy study, the dominant energy transfer process from Tb^3 to Er^3 in the crystal was then investigated via transient experiments.  相似文献   

9.
Luminescence Properties of Sm^3+ doped Bi2ZnB2O7   总被引:4,自引:0,他引:4  
The phosphors of (Bi1- x Smx ) 2ZnB2O7 ( x = 0. 01, 0. 03, 0. 05, 0. 07, and 0. 09) were synthesized by conventional solid state reaction. The purity of all samples was checked by X-ray powder diffraction (XRD). XRD analysis shows that all these compounds are of a single phase of Bi2ZnB2O7, indicating that the Bi^3+ in Bi2ZnB2O7 can be partly replaced by the Sm^3+ without the change of crystal structure. The excitation and emission spectra at room temperature show the typical 4f-4f transitions of Sm^3+ . The dominant excitation line is around 404 nm due to ^6H5/2→^4K11/2 and the emission spectrum consists of a series of lines at 563, 599, 646, and 704 nm due to ^4G5/2→^6H5/2, ^6H7/2, ^6H9/2, and ^6H11/2, respectively. The optimal concentration of Sm^3+ in Bi2ZnB2O7 is about 3mol% (relative to lmol Bi^3+ ) and the critical distance Rc was calculated as 2.1 nm. The temperature dependence of the emission intensity of Bi1.94Sm0.06ZnB2O7 was examined in the temperature range between 100 and 450 K. The quenching temperature where the intensity has dropped to half of the initial intensity is 280 K. The lifetime for Sm^3+ in Bi1.94Sm0.06ZnB2O7 is fitted as a value of 0.29 and 1.03 ms.  相似文献   

10.
YAl3 (BO3)4: Eu^3+ phosphors were prepared by the conventional solid state reaction. The phase structure and morphology were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). Doping YAl3(BO3)4: Eu^3+ phosphors with concentration of Eu^3+ ions of 0, 2, 5, 8 and 10 mol% were studied and their luminescent properties at room temperature were discussed. The excitation spectrum of Y0.95Eu0.05Al3(BO3)4 was composed of a broad band centered at about 252 nm and a group of lines in the longer wavelength region. In the emission spectra, the peak wavelength was about 614 nm under a 252 nm UV excitation. The optimal doping concentration of Eu^3+ ions in YAl3(BO3)4: Eu^3+ phosphors was 8 mol%.  相似文献   

11.
The thermoluminescence (TL) and photoluminescence (PL) properties of the phosphor NaSrBO 3 :Tb 3+ were reported and discussed. The combustion technique was used for the synthesis of polycrystalline samples of NaSrBO 3 :Tb 3+ . The TL glow curve of the compound had a simple structure with a single peak at 434 K. TL sensitivity of the phosphor was found to be more than that of (LiF:Mg,Cu,P). The TL glow curve was studied as a function of concentration of dopant and dose of gamma ray irradiation. The kinetic parameters of the thermoluminescence of NaSrBO 3 : Tb 3+ were calculated employing the peak shape method. The photoluminescence (PL) properties of Tb 3+ doped in NaSrBO 3 were studied over the 200-400 nm excitation range. The excitation spectra of NaSrBO 3 :Tb 3+ consisted of single narrow band peaking at about 236 nm. The emission spectra monitored at 236 nm excitation consisted of a series of sharp lines peaking at 489, 544, 586 and 622 nm corresponding to the 5 D 4 → 7 F j (j=3,4,5,6) transitions within the 4f 8 configurations of Tb 3+ .  相似文献   

12.
Rare earth ions doped gadolinium oxybromide phosphors GdOBr:RE3 (RE=Eu, Tb, Ce) were synthesized by the method of solid-state reaction at high temperature, and the VUV-VIS spectroscopic properties of the phosphors were systematically investigated. Under the excitation of VUV or UV source, the phosphors doped with Eu3 and Tb3 show a bright and sharp emission at around 620 nm corresponding to the forced electric dipole 5D0→7F2 transition of Eu3 , and at around 544 nm corresponding to the 5D4→7F5 transition of Tb3 , respectively. For GdOBr:Ce3 , a broader and intense emission spanned 370-500 nm corresponding to the d-f transition of Ce3 was observed. The excitation spectra were also analyzed.  相似文献   

13.
Thephosphorsusedinplasmadisplaypanel(PDP)deviceshouldemitvisiblelightundervacuum ultraviolet(VUV)excitationof147nmand or172nm fromXe Hegasplasma[1].Recentlylotsoftraditional lampphosphorshavebeenusedascommercialphos phorsforPDP.However,thesematerialsstill…  相似文献   

14.
We reported magnetooptical properties of Eu3+(4f(6)) and Tb3+(4f(8)) in single crystals of Gd3Ga5O12 (GGG), Y3Ga5O12 (YGG), and Eu3+(4f(6)) in Eu3Ga5O12 (EuGG) for both ions occupying sites of D2 symmetry in the garnet structure. Absorption, luminescence, and magnetic circular polarization of luminescence (MCPL) spectra of Tb3+ in GGG and YGG and absorption and magnetic circular dichroism (MCD) of Eu3+ in EuGG were studied. The data were obtained at 85 K and room temperature (RT). Magnetic susceptibility of...  相似文献   

15.
采用溶胶-凝胶法合成了一系列适合紫外-近紫外激发的(1-X)Sr2SiO4:XTb3+(X=0,0.01,0.02,0.03,0.04,0.05,0.06)绿色荧光粉,并采用X射线衍射(XRD)、扫描电子显微镜(SEM)和荧光光谱(PL)研究了样品的结构及发光性能.由XRD的检测结果可知,合成样品属于单斜晶系的β-Sr2SiO4相.由SEM图可知,所有样品都呈无规则块状结构.当监测波长为546 nm,样品的激发光谱的主峰位于370 nm处,属于Tb3+的4f-4f特征跃迁吸收.当激发波长分别为285 nm和250 nm,所有样品在488 nm,547 nm,586 nm,623 nm处都出现了1个强发射峰,分别对应Tb3+的5D4→7F6、5D4→7F5、5D4→7F4和5D4→7F3电子跃迁.最强发射峰位于547 nm处,呈现特征为绿光发射.随Tb3+掺杂量增大,发射强度呈现出先增大后减小的变化趋势,即存在浓度猝灭效应.当Tb3+掺杂量为X=0.03时,样品的发光强度最大.   相似文献   

16.
Tb3+ and Yb3+ codoped Lu2O3 nanophosphors were synthesized by the reverse-strike co-precipitation method. The obtained Lu2O3:Tb3+,Yb3+ nanophosphors were characterized by X-ray diffraction (XRD) and photoluminescence (PL) spectra. The XRD results showed that all the prepared nanophosphors could be readily indexed to pure cubic phase of Lu2O3 and indicated good crystallinity. The Tb3+→Yb3+ energy transfer mechanisms in the UV-blue region in Lu2O3 nanophosphors were investigated. The experimental results showed that the strong visible emission around 543 nm from Tb3+ (5D4→7F5) and near-infrared (NIR) emission around 973 nm from Yb3+ (2F5/2→2F7/2) of Lu2O3:Tb3+,Yb3+ nanophosphors were observed under ultraviolet light excitation, respectively. Tb3+ could be effectively excited up to its 4f75d1 state and relaxed down to the 5D4 level, from which the energy was transferred cooperatively to two neighboring Yb3+. The Yb3+ concentration dependent luminescent properties and lifetimes of both the visible and NIR emissions were also studied. The lifetime of the visible emission decreased with the increase of Yb3+ concentration, verifying the efficient energy transfer from the Tb3+ to the Yb3+. Cooperative energy transfer (CET) from Tb3+ to Yb3+ was discussed as a possible mechanism for the near-infrared emission. When doped concentrations were 1 mol.% Tb3+ and 2 mol.% Yb3+, the intensity of NIR emission was the strongest.  相似文献   

17.
采用Claisen缩合反应合成了一种新型的β-二酮化合物1-(4-溴苯)-3-苯基丙烷-1,3-二酮(L),并以其为第一配体,邻菲罗啉(phen)为第二配体,合成出新型稀土铕,铽二元及三元配合物。通过元素分析、红外光谱、紫外光谱、荧光光谱对合成的配体及配合物进行了表征。元素分析确定了配合物的组成。红外光谱的分析表明第一配体L中的氧原子以及第二配体phen中的氮原子与稀土离子进行了配位。紫外光谱表明第一配体L为能量的给体,第二配体phen起协同作用。通过荧光光谱研究了配合物的发光性质,结果显示三元配合物的发光强度大于二元配合物,三元配合物Eu(L)3phen表现出Eu3+的特征发射,在593,615,653,701 nm处的发射峰分别归属于Eu3+的5D0→7Fj(j=1,2,3,4)能级间的跃迁,并且以位于615 nm处的5D0→7F2电子跃迁所发出的荧光强度最大;而铽配合物中并没有出现Tb3+的特征发射。进一步的研究表明,这是由于配体L的最低三重态能级较适合Eu3+的发射能级,配体L吸收的能量可以有效的通过Antenna效应传递给稀土中心离子,使得三元配合物Eu(L)3phen的发光强度较大。  相似文献   

18.
利用水热法制备了性能稳定的红色荧光粉LaPO4:Eu3+,同时研究了不同的Eu3+浓度、煅烧温度对荧光粉发光性能的影响.通过X射线粉末衍射(XRD)和扫描电子显微镜(SEM)来表征荧光粉的晶体结构和颗粒大小及形貌;用激发光谱和发射光谱以及荧光衰减曲线来表征荧光粉的荧光性能.结果表明:未煅烧时前躯体主要是六方晶相LaPO4·0.5H2O,煅烧温度在900℃时,所制备样品为单斜相LaPO4:Eu3+;SEM图像显示5 at.%Eu3+掺杂LaPO4呈椭球形,颗粒长约为500 nm,宽约为300 nm.最大发射波长和激发波长分别为592 nm和393 nm,发射光谱中592 nm和612 nm的发射峰对应的是Eu3+离子的5D0→7F1和5D0→7F2跃迁.其荧光寿命为3.32 ms.  相似文献   

19.
YbPO4:Tb3+ were synthesized by mild hydrothermal method.The luminescent properties,morphologies and structure of the obtained powders were characterized by photoluminescence(PL) spectra,FESEM,X-ray diffractometer(XRD) and FTIR.The results showed that the prepared YbPO4:Tb3+ nanoparticles were pure tetragonal phase and the average grain size varied with increasing of Tb3+ concentration.Hydrothermal temperature was revealed to be the key factor to enhance the emission intensity of YbPO4:Tb3+ phosphors.The spherical nanoparticles could be effectively excited by near UV(369 nm) light and exhibited green performance at 543 nm(5D4→7F5),489 nm(5D4→7F6) and 586 nm(5D4→7F4).The CIE chromaticity was calculated to be x=0.298,y=0.560.The YbPO4:Tb3+ nanoparticles exhibited potential to act as UV absorber for solar cells to enhance the conversion efficiency.  相似文献   

20.
杨泰  李霞 《稀土》2012,(1):37-41
采用传统高温固相法,以钨酸锶为基质材料,掺杂稀土Eu3+制备了可被紫色光有效激发的红色荧光粉Sr1-2xNaxWO4∶Eu3x+。通过测定与分析样品Sr1-2xNaxWO4∶Eu3x+的激发和发射光谱,发现激发光谱在395nm处吸收值最大,发射光谱的发射主峰位于613nm处,属于Eu3+的5D0→7F2特征跃迁。不同的Eu3+掺杂浓度下样品发光强度不同,当x=0.07时发光强度最佳。电荷补偿剂Na+对样品发光强度的影响很大,主要原因是Na+的加入会影响基质的晶体结构,当Na+的含量与Eu3+含量相同时样品发光强度最好,Na+含量增加到一定程度后基质结晶不完善,荧光体的发光强度急剧下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号