首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The aim of this work was to characterise the influence of ultra-high-temperature (UHT) treatment and high-pressure homogenisation on functional properties of whipping cream (30% fat content) in relation to adding κ-carrageenan (0%, 0.02% and 0.04% in milk plasma). The determination of the particle size distribution, which was measured by laser diffraction and verified by microscopic observation, indicated that the diameter of fat globules decreased significantly by homogenisation but clusters of small fat globules were produced before the carrageenan–casein micelles aggregates. The viscosity of cream was increased and the thixotropic behaviour was observed both by adding carrageenan and by homogenisation. The homogenisation significantly increased colloidal stability during storage and milk plasmas’ release was minimised in combination with carrageenan addition. The most influenced functional properties were: the whippability, which was significantly impaired by homogenisation, and the stability of whipped foam, which was significantly improved with the increase of the carrageenan concentration.  相似文献   

2.
大豆磷脂是UHT稀奶油适合的乳化剂。适合的复合乳化剂HLB值约为7.4。稀奶油的均质宜采用低压均质,为4×106-5×106Pa。与常温贮存相比,低温贮存时,稀奶油的脂肪球聚集、结晶、固化,稀奶油脂肪球体积平均粒径增大。在6个月的保质期内,随着保质期的延长,稀奶油脂肪球体积平均粒径由2.833μm升高到11.770μm,搅打率从115%降低到92%。文中所讨论的稀奶油产品适合蛋挞制作,蛋挞切面整齐、组织致密,无析水现象。  相似文献   

3.
Whipping cream, 36% fat, was processed at 75°C for 16 s (high-temperature short time, HTST), and 140°C for 4 s, (ultra-high temperature, UHT) with and without added stabilizer. Following heat treatment and chilling for 24 h (5°C), cream samples were whipped to maximum overrun. Structural properties were assessed through low-temperature scanning electron microscopy (LTSEM) and dynamic oscillatory testing, using a controlled stress rheometer, immediately after the cream was whipped, and again after the foam was stored for 24 h at 5°C. No differences between fresh foam treatments were observed. However, aged foams exhibited changes in microstructure because of destabilization of the foam. Differences between aged foams resulted from the addition of stabilizers and the choice of heat treatment. Microstructural differences correlated well with measured changes in rheological properties.  相似文献   

4.
There have been substantial changes in the market for liquid milk in the past few years. Within an overall decline in consumption there has been a marked shift to lower fat milks. The market for UHT milks is still low but is increasing. The cream market has also changed considerably, UHT cream now accounting for 20% of total sales. The reason is its long keeping quality. Fresh cream is still perceived as a quality product for use on special occasions.  相似文献   

5.
The effects of whipping temperature (5 to 15°C) on the whipping (whipping time and overrun) and rheological properties of whipped cream were studied. Fat globule aggregation (aggregation ratio of fat globules and serum viscosity) and air bubble factors (overrun, diameter, and surface area) were measured to investigate the mechanism of whipping. Whipping time, overrun, and bubble diameters decreased with increasing temperature, with the exception of bubble size at 15°C. The aggregation ratio of fat globules tended to increase with increasing temperature. Changes in hardness and bubble size during storage were relatively small at higher temperatures (12.5 and 15°C). Changes in overrun during storage were relatively small in the middle temperature range (7.5 to 12.5°C). From the results, the temperature range of 7.5 to 12.5°C is recommended for making whipped creams with a good texture, and a specific temperature should be decided when taking into account the preferred overrun. The correlation between the whipped cream strain hardness and serum viscosity was high (R2 = 0.906) and persisted throughout the temperature range tested (5 to 15°C). A similar result was obtained at a different whipping speed (140 rpm). The multiple regression analysis in the range of 5 to 12.5°C indicated a high correlation (R2 = 0.946) in which a dependent variable was the storage modulus of whipped cream and independent variables were bubble surface area and serum viscosity. Therefore, fat aggregation and air bubble properties are important factors in the development of cream hardness. The results of this study suggest that whipping temperature influences fat globule aggregation and the properties of air bubbles in whipped cream, which alters its rheological properties.  相似文献   

6.
Type of thermal process [high temperature, short time pasteurization (HTST) or ultra-high temperature pasteurization (UHT)] and homogenization sequence (before or after pasteurization) were examined for influence on the physicochemical properties of natural cream (20% milk fat) and creams formulated with 20% low-melt, fractionated butteroil emulsified with skim milk, or buttermilk and butter-derived aqueous phase. Homogenization sequence influenced physicochemical makeup of the creams. Creams homogenized before pasteurization contained more milk fat surface material, higher phospholipid levels, and less protein at the milk fat interface than creams homogenized after pasteurization. Phosphodiesterase I activity was higher (relative to protein on lipid globule surface) when cream was homogenized before pasteurization. Creams formulated with skim milk and modified milk fat had relatively more phospholipid adsorbed at the milk fat interface. Ultra-high-temperature-pasteurized natural and reformulated creams were higher in viscosity at all shear rates investigated compared with HTST-pasteurized creams. High-temperature, short time-pasteurized natural cream was more viscous than HTST-pasteurized reformulated creams at most shear rates investigated. High-temperature, short time-pasteurized creams had better emulsion stability than UHT-pasteurized creams. Cream formulated with buttermilk had creaming stability most comparable to natural cream, and cream formulated with skim milk and modified butteroil was least stable to creaming. Most creams feathered in a pH range of 5.00 to 5.20, indicating that they were moderately stable to slightly unstable emulsions. All processing sequences yielded creams within sensory specifications with the exception of treatments homogenized before UHT pasteurization and skim milk formulations homogenized after UHT pasteurization.  相似文献   

7.
In this work, hydroxypropyl methylcellulose (HPMC) was added into whipped cream for improving its textural and whipping properties. By determination of the particle size distribution, a single peak for the emulsion after homogenization and two distinguishable peaks for the emulsion after whipping for 5 min were observed. With the increase of HPMC level, the average particle size (d3,2) decreased for the emulsion after homogenization and increased for the emulsion after whipping for 5 min. Both whipping time and HPMC level showed positive effects on the partial coalescence of fat globules. The partial coalescence of whipped cream with 0.125% HPMC after whipping for 5 min reached 56.25%, significantly (P < 0.05) higher than that (4.77%) without whipping treatment. Surface protein concentration was measured to evaluate the change of protein content at the droplet interface. The results indicated that the increase of HPMC level could decrease the surface protein concentration slightly. The overrun of whipped cream slightly increased when the HPMC level increased in the range of 0.025–0.125%. Firmness, cohesiveness, consistency and viscosity of whipped cream were analysed in this work. HPMC showed a positive dose-dependent effect on all these textural properties.  相似文献   

8.
Dairy foams are complex aerated materials where the liquid matrix is an emulsion made by oil droplets dispersed in a water system. An innovative application of these systems leads to an interesting product derived from instant whipped creams that are stored and consumed at low temperatures (typically between??4 and??18°C) like an ice cream. This novel product requires a specific texture due to the particular conditions related to its consumption. In the present work, the effects of some relevant ingredients (emulsifiers, sugars, and fats) on rheological properties and freezing temperature of dairy emulsions were investigated. Samples were prepared on lab scale and it was found that structure extension is affected strongly by stabilizers (carrageenan and guar gum) and in a lower measure by fat content. As far as freezing point is concerned a significant effect only of sugars (type and amount) and fats was measured. A formulation having interesting properties for low temperature applications was obtained and it was prepared on a pilot plant scale to investigate the potential effects of the industrial production. These samples exhibited a relevant reduction in both viscosity and elasticity; it was speculated that this effect could be attributed to the whey protein thermal damage (induced by the UHT treatment) and to the homogenisation conditions, different from those adopted on lab scale.  相似文献   

9.
This project determined effects of time and temperature on changes of fat globule size distribution and fat content in milk fractions during gravity separation. Fresh raw bovine milk was gravity separated at 4 or 15 degrees C. After 2, 6, 12, and 48 h, seven fractions, from bottom fraction (F1) to top fraction (F7), were successively drained from a separation column. Higher temperature resulted in a faster rate of fat separation. Within 2 h, large fat globules had already moved to the top, and the volume mean diameter of F7 increased from 3.13 microm (without separation) to 3.48 and 3.64 microm, respectively, at 4 and 15 degrees C. In F7, there was little change in globule size distribution after 2 h, but fat content continued to increase with separation time. The fat content of F7 reached 26.6% after 48 h at 4 degrees C, achieving a 58.8% creaming capacity. For F1 to F6, longer separation time resulted in smaller fat globule sizes and lower fat contents, especially for F1. After 48 h at 4 degrees C, the volume mean diameter of F1 decreased from 3.23 microm (without separation) to 1.16 microm, and fat content decreased from 3.75% (without separation) to 0.20%. Gravity separation may have unique applications in the dairy industry today. Its simplicity makes it an effective procedure for small-scale dairy product manufacturers to produce milks with a range of fat contents without using a centrifugal cream separator.  相似文献   

10.
One of the reasons for spoilage of UHT milk during shelf-life is the presence of residual proteolytic activity produced from Pseudomonas spp. during storage of raw milk. The aim of this study was to describe the product defects occurring in indirectly heated UHT milk during shelf-life, and to establish a correlation between proteolytic activity and onset of product spoilage. UHT milk was produced from raw milk incubated with different Pseudomonas strains, and examined over four months during storage at 20 °C. Inactivation kinetics of the peptidases were determined. In UHT milk, product defects occurred in the order: bitterness – particles – creaming – sediment – gelation in all the samples containing peptidases (apparent enzyme activity ≥ 0.03 pkat mL−1). A linear correlation was found between proteolytic activity and onset of product defects, apart from onset of gelation.  相似文献   

11.
This work aims at improving the textural and whipping properties of whipped cream by the addition of milk fat globule membrane protein. The determination of particle size distribution and average diameter of whipped cream showed that the small particle size was shifted to a larger range after milk fat globule membrane protein was added. The average particle size (d3,2) of whipped cream reached a maximum value of 5.05 µm at 1% milk fat globule membrane protein, while slowly decreased with increasing milk fat globule membrane protein levels from 2% to 5%. In addition, the partial coalescence of fat increased with the increase of milk fat globule membrane protein levels, and the correlation between the whipping time and the overrun of whipped cream was positive. The addition of milk fat globule membrane protein also altered the rheological behaviour of whipped cream, resulting in the increase of modulus G′ and the loss modulus G″. The results also indicated that higher milk fat globule membrane protein level decreased the serum loss of whipped cream while improved its stability. While milk fat globule membrane protein levels had no significant effect on viscosity, its increasing levels effectively improved the hardness, consistency, and viscosity of whipped cream.  相似文献   

12.
Xanthan gum was used as thickening agent to prepare whipped cream in this work. A dose-dependent effect was observed on the average particle size (d3,2) of whipped cream. At each xanthan gum level (0.025–0.125%) used, whipping time also showed a positive effect on the average particle size. With the increase of xanthan gum level or whipping time, the partial coalescence of fat in the whipped cream increased gradually. However, xanthan gum level showed no significant effect on the overrun of whipped cream. The textural characteristics of whipped cream were also investigated and the results indicated that a positive correlation was found between xanthan gum level and firmness, cohesiveness or viscosity of whipped cream. A different tendency was detected for consistency. The consistency of whipped cream increased with the increase of xanthan gum level to 0.100%, thereafter decreased.  相似文献   

13.
研究了油脂用量对搅打稀奶油的粒度分布、脂肪部分聚结、液相蛋白质浓度、搅打起泡率、质构特性、感官品质和稳定时间的影响。研究表明:随着油脂用量增加,冷却后乳浊液脂肪球粒径增大;搅打过程中脂肪部分聚结速度和脂肪球粒径d4,3均随油脂用量增加而增大,且脂肪部分聚结率与脂肪球粒径d4,3有很好的相关性;液相蛋白质浓度和搅打起泡率降低;搅打稀奶油的质构特性值增加;稳定时间呈先增后减趋势,当油脂用量为23%时,搅打稀奶油的稳定时间最长达到2.7h;搅打稀奶油的感官品质以油脂用量为20%最好,综合考虑,油脂最佳用量范围是20%-23%。  相似文献   

14.
Ultra-high temperature (UHT) processed lactose-reduced milk containing added green tea extract (GTE) at two concentrations (0.1% and 0.25%) was stored at 22 ± 2 °C for one year. The effect of GTE addition on physical stability, protein binding, and sensory quality was evaluated. Sedimentation in skim milk and creaming of full fat milk were inhibited by addition of GTE. The formation of Maillard-related flavour compounds was inhibited during storage as determined by dynamic headspace GC–MS. Using Western blot analysis, milk proteins were found to be highly conjugated to polyphenols. Addition of GTE before UHT treatment resulted in increased bitterness and astringency in UHT milk and this remained during storage. Even though GTE addition improved the physical stability and inhibited Maillard reactions in the milk, the taste and flavour contribution from GTE was dominating throughout storage, and alternative sources of polyphenols should be explored for increasing shelf-life stability of long-life milk.  相似文献   

15.
Kirsty E. Allen  Brent Murray 《LWT》2006,39(3):225-234
Aeration properties of acidified casein-stabilized emulsions containing liquid oil droplets have been compared to the whipping of dairy cream. The foam systems were characterized in terms of overrun, microstructure, drainage stability, and rheology. With acidification using glucono-δ-lactone, the casein-stabilized emulsions could be aerated to give foams of far higher overrun (>600%) than whipped cream (∼120%). The development of foam volume, stability and rheology in the aerated casein-stabilized emulsion systems was found to be strongly dependent on the pH and the concentration of added calcium ions. Whereas whipped cream is stabilized by partially coalesced fat globules, the casein emulsion foams are stabilized by aggregation (gelation) of the protein coat surrounding the oil droplets. Casein emulsion foams formed at low pH were found to be more stable than whipped cream, whilst those formed at high pH were predominantly liquid-like and unstable. Instability arose in the acidified casein emulsion foams mainly through gel syneresis. We conclude that there are substantial textural differences between whipped cream and acidified casein emulsion foams, especially in terms of the small-deformation rheology and the extent of the linear viscoelastic regime.  相似文献   

16.
Whipped emulsions were prepared at pilot scale from fresh milk, whole egg, and other ingredients, for example, sugars and stabilizers (starch, polysaccharides). Egg content was varied: 4 recipes were studied differing in their egg to milk protein ratio (0, 0.25, 0.38, and 0.68). Protein and fat contents were kept constant by adjusting the recipes with skim-milk powder and fresh cream. Emulsions were prepared by high-pressure homogenization and whipped on a pilot plant. Particle-size distribution determined by laser-light scattering showed an extensive aggregation of fat globules in both mix and whipped emulsions, regardless of recipe. Amount of protein adsorbed at the oil-water interface and protein composition of adsorbed layer were determined after isolation of fat globules. Protein load is strongly increased by the presence of egg in formula. Values obtained for the whipped emulsions were dramatically lower than those obtained for the mix by a factor of 2 to 3. Sodium dodecyl sulfate-PAGE indicated a preferential adsorption of egg proteins over milk proteins at the oil-water interface, regardless of recipe. This phenomenon was more marked in aerated than in unaerated emulsions, showing evidence for desorption of some milk proteins during whipping. Egg proteins stabilize mainly the fat globule surface and ensure emulsion stability before whipping. Air bubble size distribution in whipped emulsions was measured after 15 d storage. When the egg to milk protein ratio is decreased to 0.25, large air cells appear in whipped emulsions during storage, indicating mousse destabilization. The present work allows linking the protein composition of adsorbed layers at the fat globule surface to mousse formula and mousse stability.  相似文献   

17.
κ-卡拉胶影响大豆分离蛋白乳浊液稳定性的研究   总被引:1,自引:0,他引:1  
研究了卡拉胶对大豆分离蛋白乳浊液粒度分布、乳析率和离心沉淀率的影响,在此基础上分析了静置过程中乳浊液粒径与乳析率、离心沉淀率之间相关性,结果表明:乳浊液粒径随卡拉胶浓度由小到大依次为0.03%<空白样<0.06%<0.09%;而体系的表观粘度随卡拉胶浓度的增大而升高;静置过程中乳浊液顶部粒径d3,2与乳析率有较好的相关性;乳浊液底部d3,2与离心沉淀率有很好的相关性。进一步分析了其可能的作用机理:卡拉胶低浓度时,卡拉胶分子被吸附到液滴的蛋白质正电荷区域,增加了液滴间的静电排斥,从而增加了体系的絮凝稳定性;随着卡拉胶浓度增大,卡拉胶会引起体系排斥絮凝。  相似文献   

18.
《Journal of dairy science》1988,71(3):857-862
With the application of UHT technology to the processing of whipping creams, consumers 5 purchase creams with whipping characteristics different from creams processed by conventional pasteurization. This study observed differences in whipping properties among raw, pasteurized, and UHT whipping creams. Whipping time to reach maximum volume, number of days before and after retail sell-by date, and overrun were recorded. Mean whipping time and maximum overrun varied significantly by processor, product composition, and retail cream age. Mean whipping time ranged from 1.6 min for raw unpasteurized creams to 3.4 min for UHT heavy cream without whipping aids. Mean maximum overrun ranged from 141% for UHT heavy creams without whipping aids to 216% for UHT whipping creams with aids. There was considerable variation in mean whipping time and mean maximum overrun among processors for creams of the same composition. Regression analysis between whipping time and retail cream age revealed a positive relationship for some product types and a negative relationship for others. Whipping time and maximum overrun of retail whipping creams vary substantially by product type, processing treatment, and processor.  相似文献   

19.
With normal cornstarch (CS) as material, micronized starch was prepared first by acid hydrolyzed pretreatment and then ball-milling (HMS). A control sample (MS) was prepared by ball-milling without pretreatment. Particle size and shape of micronized starch were investigated, and its application in low fat cream was studied. The Maltase cross of HMS granules almost disappeared and the particle size clearly decreased. It was evident that acid-lintnerised starch granules were more susceptible to break down upon milling. However, the granules would aggregate with an increase in milling time. Compared with full-fat cream, the apparent viscosity of low-fat cream increased, while fat globules partial coalescence rate, overrun and textural properties decreased with the increasing of the fat replacement rate. The average particle size of whipped cream increased with the increase of whipping time. Results indicate that a 15% fat replacement rate would produce cream with good foaming and storage stability.  相似文献   

20.
脂肪球在搅打乳状液中的部分聚结及其作用   总被引:5,自引:0,他引:5  
综述了脂肪球在搅打乳状液中的部分聚结现象和搅打条件、脂肪种类、脂肪球吸附膜对部分聚结的影响。以冰淇淋和搅打奶油为例 ,说明脂肪球的部分聚结对于搅打乳状液最终形成充气的泡沫结构起关键作用 ,控制脂肪球的部分聚结程度对于改善搅打乳制品的质量、性能具有重要意义。联系控制脂肪球的部分聚结在冰淇淋生产中的实际应用 ,介绍了近来国际上有关脂肪球部分聚结的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号