首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
CD34++ CD38- and CD34+ CD38+ hematopoietic progenitor cells (HPCs) from human fetal liver (FL), cord blood (CB), and adult bone marrow (ABM) were isolated and investigated for their growth characteristics, cytokine requirements and response to two modulators of early hematopoiesis, interferon (IFN)-gamma and macrophage inflammatory protein (MIP)-1alpha. We observed first that a significantly lower percentage of CD34++ cells were CD38- in ABM than in FL and CB. Second, the functional differences between CD34++ CD38- and CD34+ CD38+ cells were less pronounced in FL and CB than in their ABM counterparts. Third, an inverse correlation was found between growth factor response and the ontogenic age of HPCs, and a direct correlation was noted between cytokine requirements and the ontogenic age of HPCs. Fourth, spontaneous colony formation in a classic semisolid culture system was reproducibly obtained only in the ontogenically earliest cells, that is, in FL but not in CB and ABM, in which no such spontaneous colony formation was observed. Fifth, the modulatory effects of IFN-gamma and MIP-1alpha were qualitatively different depending on the ontogenic age of the progenitor source: whereas IFN-gamma was only a selective inhibitor of primitive CD34++ CD38- ABM progenitor cells, it inhibited both CD34++ CD38- and CD34+ CD38+ FL and CB cells to the same extent. In contrast to the effects of MIP-1alpha on ABM, we could not find any consistently stimulatory or inhibitory effects on FL and CB progenitors. In conclusion, important functional and biologic differences exist between FL, CB, and ABM progenitor cells, and these differences could have major implications for the use of these cell populations in preparative protocols of ex vivo expansion, transplantation strategies, or gene transfer experiments.  相似文献   

2.
Telomerase is a ribonucleoprotein polymerase that synthesizes telomeric repeats onto the 3' ends of eukaryotic chromosomes. Activation of telomerase may prevent telomeric shortening and correlates with cell immortality in the germline and certain tumor cells. Candidate hematopoietic stem cells (HSC) from adult bone marrow express low levels of telomerase, which is upregulated with proliferation and/or differentiation. To address this issue, we stimulated purified candidate HSC from human adult bone marrow with stem cell factor (SCF), interleukin-3 (IL-3), and Flt3-ligand (FL). After 5 days in culture, activity was detected in total cell extracts from IL-3-, SCF + FL-, SCF + IL-3-, FL + IL-3-, and SCF + IL-3 + FL-stimulated cultures, but not from cells cultured in SCF or FL alone. Within the CD34(+) fraction of the cultured cells, significant activity was found in the CD34(+)CD71(+) fraction. In addition, PKH26 staining confirmed that detectable telomerase activity was present in dividing PKH26(lo) cells, whereas nondividing PKH26(hi) cells were telomerase negative. Because in these experiments no distinction could be made between cycling "candidate" stem cells that had retained or had lost self-renewal properties, fetal liver cells with a CD34(+)CD38(-) phenotype, highly enriched for cycling stem cells, were also examined and found to express readily detectable levels of telomerase activity. Given the replication-dependent loss of telomeric DNA in hematopoietic cells, these observations suggest that the observed telomerase activity in candidate stem cells is either expressed in a minor subset of stem cells or, more likely, is not sufficient to prevent telomere shortening.  相似文献   

3.
We have previously defined the experimental conditions for hematopoietic cell expansion. CD34+ human marrow cells were maintained in a serum-free, stroma-free liquid culture system, at a concentration of 10(3) cells/ml, for 10 days at 37 degrees C, in the presence of various cytokine combinations. The basic combination of early cytokines SCF (100 ng/ml), IL3 (5 ng/ml), IL6 (10 ng/ml), has a modest stimulating effect on all compartments: the number of total cells increased 56-fold and CD34+ cells 1-fold; CFU-GM, BFU-E and CFU-MK, increased 6-fold, 5-fold and 3-fold respectively. As far as CD34+ cells are concerned, the subpopulation CD34+/CD38- was only maintained. Interestingly, the addition of 100 ng/ml of Flt3 ligand (FL) significantly enhanced the amplification of total cells (276-fold), CFU-GM (54-fold) and BFU-E (15-fold). The number of CD34+ cells and the subpopulation CD34+/38- increased to 7-fold and 22-fold respectively. Moreover, long term culture-initiating cells (LTC-ICs) in limiting dilution assay (LDA) were found to increase 3-fold. Further addition of MGDF (10 ng/ml), G-CSF (10 ng/ml) and Epo (0.5 U/ml), in various combinations, acted synergically with the previous cytokine combination to support the formation of multiple types of hematopoietic colonies. As expected, the addition of MGDF increased the number of CFU-MK up to 5-fold expansion. Interestingly, MGDF addition was synergistic also for BFU-E and CFU-GM expansion. In the combination of SCF+ IL3+ IL6+ FL + MGDF, CFU-GM expanded to 73-fold and BFU-E to 17-fold. G-CSF in SCF + IL3 + IL6 + FL conditions stressed the expansion of the granulopoietic compartment doubling the number of CFU-GM and CD33+ cells, with no consequence on LTC-IC or BFU-E. Surprisingly, G-CSF induced the expansion of the megakaryocytic lineage up to 6-fold, in a similar way as MGDF. Epo in presence of SCF+ IL3+ IL6+/-FL dramatically increased total cell expansion (2300-2800-fold), mainly erythroblastic (70% glycoA) without exhaustion of all other compartments. The simultaneous use of these three cytokines (MGDF + G-CSF + Epo) in presence of four early cytokines (SCF + IL3 + IL6 + FL) clearly allows a significant expansion of all hematopoietic compartments, precursors, progenitors, and primitive stem cells. In conclusion, these data show the ability of a stroma-free, serum-free liquid system to expand all myeloid lineages, including CFU-MK and LTC-IC which are critical for clinical application of ex vivo expanded cells.  相似文献   

4.
The fate of hematopoietic progenitor cells (HPCs) in the bone marrow (BM) microenvironment is determined by two different interactions: 1) they adhere (via integrins) to both extracellular matrix molecules and BM stromal cells; and 2) stromal cells produce cytokines that influence their survival, proliferation, differentiation, and mobilization. The ligands for the protein tyrosine kinase receptors c-KIT and FLT3/FLK2, stem cell factor (SCF), and FL are produced by BM stromal cells and are known to affect several facets of hematopoiesis. We studied another protein tyrosine kinase receptor, c-MET, and its ligand hepatocyte growth factor (HGF), also known as scatter factor (SF), which play a similar role in hematopoiesis. c-MET mRNA is expressed in immature human BM HPCs (CD34+CD33- or CD34+CD38-), but not in more mature HPCs (CD34+CD33+ or CD34+CD38+). The ligand HGF/SF is predominantly produced by BM stromal cells at both the mRNA and protein levels. We confirmed functionally that HGF/SF alone has no effect on proliferation of HPCs, but that when combined with granulocyte/macrophage colony-stimulating factor (GM-CSF) or interleukin-3 it acts as a synergistic proliferative factor, although not as potently as kit-ligand or FLT-3/FLK-2 ligand. Furthermore, HGF/SF promotes adhesion of HPCs to immobilized fibronectin. HGF/SF-induced adhesion to fibronectin is probably caused by activation of the integrins alpha4beta1 and alpha5beta1, insofar as we were able to block this interaction by using monoclonal blocking antibodies directed against these integrin subunits. Addition of the tyrosine-phosphorylation inhibitor genistein inhibited HGF/SF-induced adhesion, supporting the idea that HGF/SF-induced effects are the result of signaling via the receptor c-MET after ligand binding. The enhanced adhesion of HGF/SF to fibronectin proved to be beneficial for the maintenance of the colony-forming potential of HPCs. HGF/SF alone and especially in combination with fibronectin prolongs survival of GM colony-forming cells in liquid culture. Our data indicate that HGF/SF is a polyfunctional cytokine in the BM microenvironment. It is produced by human BM stromal cells and directly or indirectly promotes proliferation, adhesion, and survival of human HPCs.  相似文献   

5.
The ligand for flt-3 (FLT3L) exhibits striking structural homology with stem cell factor (SCF) and monocyte colony-stimulating factor (M-CSF) and also acts in synergy with a range of other hematopoietic growth factors (HGF). In this study, we show that FLT3L responsive hematopoietic progenitor cells (HPC) are CD34+CD38-, rhodamine 123dull, and hydroperoxycyclophosphamide (4-HC) resistant. To investigate the basis for the capacity of FLT3L to augment the de novo generation of myeloid progenitors from CD34+CD38- cells, single bone marrow CD34+CD38- cells were sorted into Terasaki wells containing serum-free medium supplemented with interleukin-3 (IL-3), IL-6, granulocyte colony-stimulating factor (G-CSF), SCF (4 HGF) +/- FLT3L. Under these conditions, FLT3L recruited approximately twofold more CD34+CD38- cells into division than 4 HGF alone. The enhanced proliferative response to FLT3L was evident by day 3 and was maintained at all subsequent time points examined. In accord with these findings, we also show that transduction of CD34+CD38- cells with the LAPSN retrovirus is enhanced by FLT3L. The results of these experiments therefore indicate that increased recruitment of primitive HPC into cell cycle underlies the ex vivo expansion potential of FLT3L and also its ability to improve retroviral transduction of HPC.  相似文献   

6.
Adhesive interactions with the extracellular matrix of the bone marrow (BM) stroma are of critical importance in the regulation of hematopoiesis. In part, these interactions are presumed to play an important role in retaining CD34+ hematopoietic progenitor cells (HPCs) within the BM environment, in close proximity with BM stromal cells and the cytokines they produce. Evidence of a more direct role for cell adhesion in the regulation of hematopoiesis is provided by recent data showing that adhesive interactions can also provide important costimulatory signals. We have previously shown that normal CD34+ HPCs express high levels of fibronectin (Fn) receptors very late antigen-4 (VLA-4) and VLA-5 in a low-affinity state, which do not allow HPCs to strongly adhere on immobilized Fn, and that cytokines such as interleukin-3, granulocyte-monocyte colony-stimulating factor, and stem cell factor transiently activate these receptors, providing HPCs with an adhesive phenotype on Fn. Thus, knowledge of the functional states of adhesion receptors is critical to our understanding of the physiological mechanisms responsible for the regulation of normal hematopoiesis. Herein, we show that combinations of cytokines that synergize to stimulate the proliferation of CD34+ HPCs result in additive stimulation of the adhesion of these cells to Fn. Thus, the activation level of Fn receptors expressed by normal CD34+ HPCs is highly correlated with their proliferative state, suggesting a functional link between these two events. Therefore, we propose a 2-step model with an initial activation of VLA-4 and VLA-5 generated by cytokine receptors that is followed by a secondary signal resulting from Fn binding to VLA-4 and VLA-5, which may cooperate with those generated by cytokine receptors.  相似文献   

7.
8.
The novel hematopoietic growth factor FLT3 ligand (FL) is the cognate ligand for the FLT3, tyrosine kinase receptor (R), also referred to as FLK-2 and STK-1. The FLT3R belongs to a family of receptor tyrosine kinases involved in hematopoiesis that also includes KIT, the receptor for SCF (stem cell factor), and FMS. the receptor for M-CSF (macrophage colony- stimulating factor). Restricted FLT3R expression was seen on human and murine hematopoietic progenitor cells. In functional assays recombinant FL stimulated the proliferation and colony formation of human hematopoietic progenitor cells, i.e. CD34+ cord and peripheral blood, bone marrow and fetal liver cells. Synergy was reported for co-stimulation with G-CSF (granulocyte-CSF). GM-CSF (granulocyte-macrophage CSF), M-CSF, interleukin-3 (IL-3), PIXY-321 (an IL-3/GM-CSF fusion protein) and SCF. In the mouse, FL potently enhanced growth of various types of progenitor/precursor cells in synergy with G-CSF, GM-CSF, M-CSF, IL-3, IL-6, IL-7, IL-11, IL-12 and SCF. The well-documented involvement of this ligand-receptor pair in physiological hematopoiesis brought forth the question whether FLT3R and FL might also have a role in the pathobiology of leukemia. At the mRNA level FLT3R was expressed by most (80-100%) cases of AML (acute myeloid leukemia) throughout the different morphological subtypes (MO-M7), of ALL(acute lymphoblastic leukemia) of the immunological subtypes T-ALL and BCP-ALL (B cell precursor ALL including pre-pre B-ALL, cALL and pre B-ALL), of AMLL (acute mixed-lineage leukemia), and of CML (chronic myeloid leukemia) in lymphoid or mixed blast crisis. Analysis of cell surface expression of FLT3R by flow cytometry confirmed these observations for AML (66% positivity when the data from all studies are combined), BCP-ALL (64%) and CML lymphoid blast crisis (86%) whereas less than 30% of T-ALL were FLT3R+. The myeloid, monocytic and pre B cell type categories also contained the highest proportions of FLT3R+ leukemia cell lines . In contrast to the selective expression of the receptor, FL expression was detected in 90-100% of the various cell types of leukemia cell lines from all hematopoietic cell lineages. The potential of FL to induce proliferation of leukemia cells in vitro was also examined in primary and continuously cultured leukemia cells. The data on FL-stimulated leukemia cell growth underline the extensive heterogeneity of primary AML and ALL samples in terms of cytokine-inducible DNA synthesis that has been seen with other effective cytokines. While the majority of T-ALL (0-33% of the cases responded proliferatively; mean 11%) and BCP-ALL (0-30%; mean 20%) failed to proliferate in the presence of FL despite strong expression of surface FLT3R, FL caused a proliferative response in a significantly higher percentage of AML cases (22-90%; mean 53%). In the panel of leukemia cell lines examined only myeloid and monocytic growth factor- dependent cell lines increased their proliferation upon incubation with FL, whereas all growth factor-independent cell lines were refractory to stimulation. Combinations of FL with G-CSF, GM-CSF, M-CSF, IL-3, PIXY- 321 or SCF and FL with IL-3 or IL-7 had synergistic or additive mitogenic effects on primary AML and ALL cells, respectively. The potent stimulation of the myelomonocytic cell lines was further augmented by addition of bFGF (basic fibroblast growth factor), GM-CSF, IL-3 or SCF. The inhibitory effects of TGF-beta 1 (transforming growth factor-beta 1) on FL- supported proliferation were abrogated by bFGF. Taken together, these results demonstrate the expression of functional FLT3R capable of mediating FL- dependent mitogenic signaling in a subset of AML and ALL cases further underline the heterogeneity of AML and ALL samples in their proliferative response to cytokine.  相似文献   

9.
Flt3 ligand (FL) has been proposed as a possible modulator of early hematopoietic cell growth. The purpose of this study was to analyze the impact of FL on ex vivo expansion of hematopoietic cells obtained from adult donors. We sought to precisely identify hematopoietic populations responsive to FL and to quantitate the ability of FL to enhance the survival and/or proliferation of early hematopoietic precursors in a stroma-free culture system. Towards that end, four CD34+ subsets were isolated and their response to FL was characterized. In methylcellulose, FL significantly increased colony formation by CD34+ CD38dim cells but not CD34+ CD38+ cells. In suspension culture, the enhancement of cell expansion by FL was 10 times greater with the CD34+ CD38dim fraction than the CD34+ CD38+ fraction. FL stimulated the generation of colony-forming unit-granulocyte-macrophage (CFU-GM) from the CD34+CD38dim fraction by 14.5- +/- 5.6-fold. To determine if CD34+ CD38dim cells responded uniformly to FL, the population was subdivided into a CD34+ CD38dim CD33dim HLA-DR+ (HLA-DR+) fraction and a CD34+ CD38dim CD33(dim) HLA-DRdim (HLA-DRdim) fraction. FL was far more effective at stimulating cell and progenitor growth from the HLA-DR+ fraction. To determine if FL enhanced or depleted the number of precommitted cells in expansion culture, CD34+ CD38dim and HLA-DR+ fractions were incubated in liquid culture and analyzed by flow cytometry. Inclusion of FL enhanced the absolute number of primitive CD34+ CD33dim cells and CD34+ HLA-DRdim cells after 5 to 12 days of cultivation. To confirm immunophenotypic data, the effect of FL on long-term culture-initiating cells (LTCIC) was determined. After 2 weeks of incubation of CD34+ CD38dim or HLA-DR+ cultures, LTCIC recoveries were significantly higher with FL in 5 of 6 trials (P < . 05). For HLA-DR+ cells, LTCIC recoveries averaged 214% +/- 87% of input with FL and 24% +/- 16% without FL. In contrast, HLA-DRdim LTCIC could not be maintained in stroma-free culture. We conclude that less than 10% of CD34+ cells respond vigorously to FL and that those cells are contained within the HLA-DR+ fraction. FL stimulates the expansion of total cells, CD34+ cells, and CFU-GM and enhances the pool of early CD34+ CD33(dim) cells, CD34+ HLA-DRdim cells, and LTCIC. These data indicate that it is possible to expand hematopoietic progenitors from adult donors without losing precursors from the precommitted cell pool.  相似文献   

10.
We generated monoclonal antibodies against the human Flt3 receptor and used them to study the characteristics of normal human bone marrow cells resolved based on Flt3 expression. Human CD34+ or CD34+lin- marrow cells were sorted into two populations: cells expressing high levels of Flt3 receptor (Flt3high) and cells with little or no expression of Flt3 receptor (Flt3low). Flt3 receptor was detected on a subset of CD34+CD38- marrow cells, as well as on CD34+CD19+ B lymphoid progenitors and CD34+CD14+CD64+ monocytic precursors. Flt3 receptor was also present on more mature CD34-CD14+ monocytes. In colony-forming assays, Flt3high cells gave rise mainly to colony-forming unit-granulocyte-macrophage (CFU-GM) colonies, whereas Flt3low cells produced mostly burst-forming unit-erythroid colonies. There was no difference in the number of multilineage CFU-Mix colonies between the two cell fractions. Cell cycle analysis showed that a large number of the Flt3low cells were in the G0 phase of the cell cycle, whereas Flt3high cells were predominantly in G1. Cell numbers in the suspension cultures initiated with Flt3high cells were maintained in the presence of Flt3 ligand (FL) alone, and increased in response to FL plus kit ligand (KL). In contrast, cell numbers in the suspension cultures started with Flt3low cells did not increase in the presence of FL, or FL plus KL. Upregulation of Flt3 receptor on Flt3low cells was not detected during suspension culture. CD14+ monocytes were the major cell type generated from CD34+lin-Flt3high cells in liquid suspension culture, whereas cells generated from CD34+lin-Flt3low cells were mainly CD71+GlycA+ erythroid cells. These results show clear functional differences between CD34+Flt3high and CD34+Flt3low cells and may have implications concerning the in vitro expansion of human hematopoietic progenitor cells.  相似文献   

11.
In vitro exposure of murine hematopoietic stem cells (HSCs) to cell cycle-inducing cytokines has been shown to result in a defect in the ability of these cells to engraft. We used a porcine microvascular endothelial cell (PMVEC) line in conjunction with exogenous interleukin (IL)-3, IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF), and stem cell factor (SCF) to expand human HSCs that express the CD34 and Thy-1 antigens but lack lineage-associated markers (CD34+Thy-1+Lin- cells). Ex vivo expansion of hematopoietic cells was evaluated in comparison to stromal cell-free, cytokine-supplemented cultures. Cells expressing the CD34+Thy-1+Lin- phenotype were detectable in both culture systems for up to 3 weeks. These cells were reisolated from the cultures and their ability to engraft human fetal bones implanted into SCID mice (SCID-hu bone) was tested. HSCs expanded in PMVEC coculture were consistently capable of competitive marrow repopulation with multilineage (CD19+ B lymphoid, CD33+ myeloid, and CD34+ cells) progeny present 8 weeks postengraftment. In contrast, grafts composed of cells expanded in stroma-free cultures did not lead to multilineage SCID-hu bone repopulation. Proliferation analysis revealed that by 1 week of culture more than 80% of the cells in the PMVEC cocultures expressing the primitive CD34+CD38- phenotype had undergone cell division. Fewer than 1% of the cells that proliferated in the absence of stromal cells remained CD34+CD38-. These data suggest that the proliferation of HSCs in the presence of IL-3, IL-6, GM-CSF, and SCF without stromal cell support may result in impairment of engraftment capacity, which may be overcome by coculture with PMVECs.  相似文献   

12.
We identified the cell cycle status of CD34(+) cells of steady-state bone marrow (BM) and peripheral blood (PB) obtained from healthy volunteers, and those of apherasis PB samples collected from healthy donors who had been administered granulocyte colony-stimulating factor (G-CSF). More than 10% of CD34(+) cells in BM were in S+G2/M phase. In contrast, regardless of whether G-CSF treatment was performed, less than 2% of CD34(+) cells in PB were cycling. BM CD34(+) cells showed greater VLA-4 expression and adherence to stromal cells than PB CD34(+) cells. In addition, when cycling and dormant BM CD34(+) cells were analyzed separately, the cells in S+G2/M phase expressed more VLA-4 and adhered to the stromal cell monolayer more efficiently than the cells in G0/G1 phase. Furthermore, this adhesion of CD34(+) cells to the stromal cell layer was almost completely inhibited by anti-VLA-4 antibody. Taken together, these results suggest that CD34(+) progenitors in G0/G1 phase of the cell cycle differ from those in S+G2/M phase in adhesiveness mediated by VLA-4 in the hematopoietic microenvironment.  相似文献   

13.
Thrombopoietin (Tpo) is a primary regulator of megakaryocyte and platelet production. However, studies in c-mpl-deficient mice suggest that Tpo might also play an important role in early hemopoiesis. Here, the direct ability of Tpo to stimulate stroma-independent growth, multilineage differentiation, and progenitor cell expansion from single primitive CD34+ CD38- human bone marrow cells was investigated. Tpo alone stimulated limited clonal growth, but synergized with c-kit ligand (KL), flt3 ligand (FL), or IL-3 to potently enhance clonogenic growth. Whereas KL and FL in combination stimulated the clonal growth of only 3% of CD34+ CD38- cells, 40% of CD34+ CD38- cells were recruited by KL+FL+Tpo, demonstrating that Tpo promotes the growth of a high fraction of CD34+ CD38- progenitor cells. Additional cytokines (IL-3, IL-6, and erythropoietin (Epo)) did not significantly enhance clonal growth above that observed in response to KL+FL+Tpo. In contrast, Tpo enhanced clonogenic growth in response to KL+FL+IL-3+IL-6+Epo by as much as 80%, implicating a key role for this cytokine in early hemopoiesis. Importantly, we also demonstrate that the majority of Tpo-recruited CD34+ CD38- progenitor cells have a multilineage differentiation potential, and that Tpo promotes prolonged expansion of multipotent progenitors. Specifically, whereas progenitor cells were reduced in cultures containing only KL+FL, addition of Tpo resulted in 40-fold expansion of multipotent progenitors following a 14-day incubation. Finally, we identified inhibitors of Tpo-induced progenitor cell growth, in that TGF-beta as well as TNF-alpha almost completely abrogated the growth of CD34+ CD38- progenitor cells in response to Tpo alone as well as KL+FL+Tpo.  相似文献   

14.
We previously reported the aberrant growth of granulocyte-macrophage (GM) progenitors induced by a combination of stem cell factor (SCF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in juvenile chronic myelogenous leukemia (JCML). We examined here the effects of thrombopoietin (TPO) on the proliferation and differentiation of hematopoietic progenitors in JCML. In serum-deprived single-cell cultures of normal bone marrow (BM) CD34+CD38high cells, the addition of TPO to the culture containing SCF + GM-CSF resulted in an increase in the number and size of GM colonies. In the JCML cultures, in contrast, the number of SCF + GM-CSF-dependent GM colonies was not increased by the addition of TPO. However, the TPO addition caused an enlargement of GM colonies in cultures from the JCML patients to a significantly greater extent compared with the normal controls. There was no difference in the type of the constituent cells of GM colonies with or without TPO grown by JCML BM cells. A flow cytometric analysis showed that the c-Mpl expression was found on CD13+ myeloid cells generated by CD34+CD38high BM cells from JCML patients, but was at an undetectable level in normal controls. The addition of TPO to the culture containing SCF or SCF + GM-CSF caused a significant increase in the production of GM colony-forming cells by JCML CD34+CD38neg/low population, indicating the stimulatory effects of TPO on JCML primitive hematopoietic progenitors. Normal BM cells yielded a significant number of megakaryocytes as well as myeloid cells in response to a combination of SCF, GM-CSF, and/or TPO. In contrast, megakaryocytic cells were barely produced by the JCML progenitors. Our results may provide a fundamental insight that the administration of TPO enhances the aberrant growth of GM progenitors rather than the recovery of megakaryocytopoiesis.  相似文献   

15.
Recently we reported that the human thymus contains a minute population of CD34+CD38dim cells that do not express the T-cell lineage markers CD2 and CD5. The phenotype of this population resembled that of CD34+CD38dim cells present in fetal liver, umbilical cord blood, and bone marrow known to be highly enriched for pluripotent hematopoietic stem cells. In this report we tested the hypothesis that the CD34+CD38dim thymocytes constitute the most primitive hematopoietic cells in the thymus using a combination of phenotypic and functional analyses. It was found that in contrast to CD34+CD38dim cells from fetal liver and bone marrow, CD34+CD38dim cells from the thymus express high levels of CD45RA and are negative for Thy-1. These data indicate that the CD34+CD38dim thymocytes are distinct from pluripotent stem cells. CD34+CD38dim thymocytes differentiate into T cells when cocultured with mouse fetal thymic organs. In addition, individual cells in this population can differentiate either to natural killer cells in the presence of stem cell factor (SCF), interleukin-7 (IL-7), and IL-2 or to dendritic cells in the presence of SCF, granulocyte-macrophage colony-stimulating factor, and tumor necrosis factor alpha(TNFalpha), indicating that CD34+CD38dim thymocytes contain multi-potential hematopoietic progenitors. To establish which CD34+ fetal liver subpopulation contains the cells that migrate to the thymus, we investigated the T-cell-developing potential of CD34+CD38dim and CD34+CD38+ fetal liver cells and found that the capacity of CD34+ fetal liver cells to differentiate into T cells is restricted to those cells that are CD38dim. Collectively, these findings indicate that cells from the CD34+CD38dim fetal liver cell population migrate to the thymus before upregulating CD38 and committing to the T-cell lineage.  相似文献   

16.
Manipulations to enhance engraftment of donated cells may be advantageous in transplantation of fetal hematopoietic cells (FHC). By assessing the formation of colonies, CD34+ enrichment was evaluated with and without cytokine stimulation (interleukins 3 and 6, stem cell factor, granulocyte-macrophage colony-stimulating factor). Cord blood cells and bone marrow cells served as controls. In FHC, cytokine stimulation and CD34+ enrichment always enhanced the formation of CFU-GM (colony-forming units--granulocytes, macrophages) and CFU-GEMM (colony-forming units-granulocytes, erythroid cells, macrophages, megakaryocytes). However, BFU-E (burst-forming units--erythroid cells) in FHC remained unchanged after cytokine stimulation and CD34+ enrichment. In FHC, the addition of cytokines and the enrichment of CD34+ cells usually contributed equally to enhance CFU-GM and CFU-GEMM colony formation. CD34-negative FHC produced the same number or more BFU-E and half the number of CFU-GM and CFU-GEMM as compared with crude cells. This CD34-negative cell population also responded to cytokine stimulation. Such findings may indicate that purification of CD34+ cells is not meaningful in fetal transplantation.  相似文献   

17.
Successful retroviral gene transfer into human hematopoietic stem cells was demonstrated in preliminary clinical trials at low efficiency. We have shown previously that gene transfer into committed hematopoietic progenitor cells is more efficient using a gibbon ape leukemia virus (GALV)-pseudotyped retroviral vector instead of an amphotropic retroviral vector. Here, we have conducted a systematic study of human hematopoietic progenitor cells after extended transduction with a GALV-pseudotyped retroviral vector. CD34+/CD38lo Cells were transduced for 5 days and reselected according to phenotype after culture and analyzed for cell cycle status, long-term culture-initiating cell (LTC-IC) activity, and gene transfer. Reselection of rare, very primitive progenitor cells was successful. Equal to fresh CD34+/CD38lo cells, >90% of reselected CD34+/CD38lo cells were in G0/G1. CD34+/CD38lo reselection enriched for LTC-IC (10-fold), as compared to freshly isolated CD34+/CD38lo cells with excellent specificity (82.7% of total LTC-IC were recovered in the reselected CD34+/CD38lo population) and recovery (62% of initial LTC-IC number in CD34+/CD38lo cells were recovered in the reselected fraction after transduction). Gene transfer into primitive progenitor cells was efficient with 50.5% G418-resistant LTC-IC colonies and more than 40 copies of vector provirus detectable per 100 nuclei of CD34+/CD38lo cells. To our knowledge, this is the first systematic analysis of phenotype, function, and cell cycle demonstrating retroviral gene transfer into rare, very primitive human hematopoietic progenitor cells. The chosen strategy should be of considerable value for analyzing and improving gene therapy of the hematopoietic system.  相似文献   

18.
19.
Purified primitive progenitor/stem cells from bone marrow represent likely target populations for ex vivo expansion of stem cells to be used in high-dose chemotherapy or gene therapy. Whereas such primitive progenitor cells require combined stimulation by multiple cytokines for growth, some cytokines selectively promote viability rather than growth when acting individually. We investigated here for the first time the direct effects of cytokines on survival of primitive CD34+CD38- human bone marrow progenitor cells at the single-cell level. Interleukin-3 (IL-3) and the ligands for c-kit (KL) and flt3 (FL) had direct and selective viability-promoting effects on a small fraction of CD34+CD38- but not CD34+CD38+ progenitor cells. Interestingly, the recently cloned thrombopoietin (Tpo), although stimulating little growth, kept most CD34+CD38- progenitors viable after prolonged culture, maintaining twofold and fourfold more progenitors viable than KL and IL-3, respectively. A high fraction of these progenitors had a combined myeloid and erythroid differentiation potential, as well as capacity for prolonged production of progenitor cells under stroma-independent conditions. In addition, Tpo promoted viability of CD34+CD38- long-term culture-initiating cells, further supporting the idea that Tpo promotes viability of primitive human progenitor cells. Finally, Tpo suppressed apoptosis of CD34+CD38- cells in culture. Thus, the present studies show a novel effect of Tpo, implicating a potential role of this cytokine in maintaining quiescent primitive human progenitor cells viable.  相似文献   

20.
There is a need to determine whether culture conditions may exist for ex vivo expansion of hematopoeitic stem cells (HSC), which favor solely proliferative self-renewal of HSC as opposed to proliferation with differentiation. Using single cells, we studied the effects of individual and combinations of cytokines in serum-free medium on the kinetics of the first cell doubling and the resulting phenotype of each of individual daughter cell. CD34(+)Thy-1(+)lin- cells were plated 1 cell per well in Terasaki plates in serum-free medium containing cytokines. Each well containing a single cell was monitored daily over 7 days for maintenance, division, or death. When division occurred in an individual well, the phenotype of the daughter cells was determined by staining with anti-CD34 fluorescein isothiocyanate (FITC)- and phycoerythrin (PE)-conjugated lineage specific antibodies. The cumulative percent of wells with an undivided single cell, wells in which the cell had divided, and wells in which the cell had died were scored. The number of doublets with conserved phenotype (CD34(+)lin-) was compared to those wells with one or more differentiated daughter cells (CD34(+)lin+). Over 7 days, cells cultured in single factors showed that between 13% (interleukin-6 [IL-6]) and 29% (thrombopoietin [TPO]) of the cells were undivided, between 13% (IL-1) and 35% (TPO) of the cells doubled, and between 35% (TPO) and greater than 60% (IL-11, IL-1, or hepatocyte growth factor [HGF]) died. When combinations of cytokines were used over 7 days, between 5% (FLT-3 ligand [FLT-3L], stem cell factor [SCF], IL-3, IL-6, granulocyte colony-stimulating factor [G-CSF], beta nerve growth factor [betaNGF]) and 22% (FLT-3L + HGF) of the cells remained undivided, between 15% (HGF, IL-1, IL-11, G-CSF) and 68% (SCF + TPO) of the cells had doubled and between 27% (FLT-3L + TPO) and 70% (HGF, IL-1, IL-11, G-CSF) died. The combination of FLT-3L + TPO induced the highest total percent (64. 6%) of cells with conserved phenotype (percent conserved doublets + percent with 1 cell conserved), followed by SCF + TPO, (50%) and the combination of FLT-3L, SCF, IL-3, IL-6, G-CSF, betaNGF (53%). These combinations also produced the highest yield of cells with conserved phenotype after one division (FLT-3L + TPO - 81 cells/100 initial cells, SCF + TPO - 68 cells/100 initial cells) (P =.01). Observation of the time of the initial cell division and phenotype of the daughter cells allowed us to identify candidate combinations of cytokines that promote maintenance of lin- cells (TPO), or recruit the primitive cells to divide and undergo phenotypic self-renewal (FLT-3L + TPO, SCF + TPO).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号