首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
为探究瓦斯对煤冲击倾向性能量指标的影响,基于含瓦斯煤的受力特点,建立含瓦斯煤样气-固耦合控制方程,并植入COMSOL数值模拟软件,开展瓦斯对弹性能量指数和冲击能量指数的影响研究。结果表明:伴随瓦斯压力的增加,煤样中塑性应变区域扩大,且塑性应变程度有所增加,煤样储存弹性应变能的能力下降;煤样变形破坏过程中消耗能量增加,煤样完全破坏后盈余能量减少,导致冲击能量指数和弹性能量指数降低;瓦斯弱化了煤的冲击倾向性,在含瓦斯煤层冲击倾向性鉴定和冲击危险性评价过程中应充分考虑瓦斯对煤冲击特性的影响。  相似文献   

2.
瓦斯对冲击性煤样能量耗散的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
基于煤的冲击倾向性分类及指数测定方法,进行了不同瓦斯压力下煤样冲击倾向性测定,应用能量积聚与耗散的方法,分析了不同瓦斯压力环境中煤样单轴压缩与循环加卸载过程中能量积聚与耗散关系。研究表明:随着瓦斯压力的增大,煤样的冲击倾向性指数减小,冲击倾向性降低;煤样破坏前储存的弹性能降低,破坏时耗散能增率呈非线性快速降低趋势;在循环载荷作用下,煤样在相同循环中耗散能随着瓦斯压力的增加而增加。在不考虑瓦斯膨胀能的情况下,瓦斯压力的增加降低了煤层冲击地压的破坏性。因此,高瓦斯矿井在深部开采中进行冲击倾向性评价时应考虑瓦斯因素。  相似文献   

3.
为探究强冲击倾向性煤在多级循环加载下能量积聚与耗散形态、损伤演化过程,以充分辨识冲击倾向性煤破坏前兆,利用TAW-2000型电液私服试验机对强冲击倾向性煤样进行了多级应变循环加载和多级应力循环加载试验。试验表明:在多级应变和应力加载条件下,振铃计数率均呈现加载初期振铃计数较高,临近破坏时振铃计数急剧增加趋势;每级加卸载产生的能量耗散与损伤变量均呈现出先降低后增加的趋势;受加载方式的影响,应力加载条件下振铃计数更高,且在载荷转换阶段,煤样有明显声发射现象,煤样内部结构劣化较快,单循环损伤程度严重,煤样累计损伤增长更快;伴随循环级数的增加FR值逐渐降低,且呈现加速下降趋势;循环加载初期煤样变形处于压密和弹性变形阶段,损伤程度低,Kaiser效应显著,上一级循环载荷超过煤样峰值强度的60%后,煤样损伤加剧,在次级加载时Felicity效应显著。  相似文献   

4.
为研究强冲击倾向性煤在多级循环加载条件下的能量耗散特征及损伤演化过程,在实验室开展了陕西某矿煤样的多级循环加载试验,试验研究结果表明:在多级应力循环下煤样的耗散能先迅速降低,后缓慢增加,当循环上限应力达到63%破坏载荷时,耗散能开始急剧增加;而能量耗散率先迅速降低,后逐渐稳定;煤样加卸载阶段弹性模量均有增大趋势,加载阶段弹性模量先迅速增大,后缓慢增加,而卸载阶段弹性模量变化较为平稳。采用累积耗散能定义循环加载中试件的损伤变量,并建立煤样损伤演化方程,通过试验和数值计算测定各个参数。理论和试验研究表明,基于能量耗散分析建立的冲击倾向性煤损伤演化方程能够较好反映煤样的损伤演化过程。  相似文献   

5.
以深部高瓦斯矿井复合动力灾害为研究背景,以瓦斯压力对煤样的冲击倾向性的影响为研究目的,以RMT-150C型岩石力学试验机为载体,研发含瓦斯煤岩单轴压缩条件下受载变形破坏实验装置,并结合XL2101C程控静态电阻应变仪组成含瓦斯煤单轴压缩实验系统,进行含瓦斯煤的冲击倾向性指标测定试验。试验结果表明:煤样在充气过程和吸附瓦斯过程均存在扩容现象,煤样体积随瓦斯压力的增大而增加,吸附过程煤样体积变化分为两个阶段:加速变形阶段和平缓阶段;随着瓦斯压力从0增加到2 MPa,煤样的动态破坏时间增加547.64%,煤样的弹性能量指数、冲击能量指数和单轴抗压强度分别降低85.29%,96.24%和58.78%,综合评价结果为冲击倾向性降低。  相似文献   

6.
武成家  秦涛  刘振文  刘刚 《中国矿业》2021,30(2):160-166
为了研究不同冲击倾向性煤样在循环载荷下的力学特征及能量演化规律,对强冲击倾向性煤样、弱冲击倾向性煤样和无冲击倾向性煤样进行系统分析,并提出了弹性能释放速率及计算方法,得到不同冲击倾向性煤样循环载荷下应力-应变曲线的特征、应变变化规律及耗散能和弹性能转化规律,给出不同冲击倾向性煤样破坏与能量演化关系.研究结论如下:无冲击...  相似文献   

7.
煤的破坏是能量驱动下的一种失稳现象,为探究水分对煤破坏过程中能量积聚与耗散的影响,开展了不同含水状态煤样的单轴压缩试验,并基于此对煤的力学性能及冲击能量指数进行分析。结果表明:随含水率的增加,煤样单轴抗压强度和弹性模量显著降低;煤样的初始压密阶段、塑性变形破坏阶段及峰后破坏阶段在全应力-应变过程中的占比均增大,线弹性阶段占比减小;煤样峰前积聚变形能减小,峰后损耗变形能升高,冲击能量指数降低;含水率增加使煤样由劈裂破坏转变为剪切破坏,在破坏时崩落的碎块粒径变大,碎块数量减少,破坏声响减弱;饱水状态下煤样较干燥状态煤样单轴抗压强度、冲击能量指数及冲击能量速度指数分别下降35.32%、86.07%、99.63%;采用煤层注水工艺能有效降低煤层冲击倾向性。  相似文献   

8.
为了研究不同冲击倾向性煤单轴压缩过程中的能量演化规律与损伤特征,基于实验室冲击倾向性等力学参数测试,通过颗粒流数值程序PFC2D获取能够较真实反映煤样宏观力学特性的细观参数,模拟分析了不同冲击倾向性煤单轴压缩下的能量演化规律与损伤特征。研究结果表明:不同冲击倾向性煤的能量演化规律相似,峰值强度前,边界做功主要转化为应变能,耗散能、滑动能与动能的占比则非常小;峰值强度后,应变能快速释放,耗散能、滑动能与动能开始迅速增长。随着冲击倾向性的增强,应变能释放与动能增长速率显著增大,提出应变能释放比率与动能增长比率2个指标,发现应变能释放比率、动能增长比率与冲击倾向性指标中的单轴抗压强度、冲击能量指数以及弹性能量指数具有很好的相关性,可采用该指标来辅助评判煤样的冲击倾向性。峰值强度前不同冲击倾向性煤样内部微裂纹演化规律近似,峰值强度点后微裂纹急剧增长,增速与冲击倾向性呈正相关关系。基于裂纹萌生与体积应变曲线的确定方法,得出煤的起裂应力水平主要分布在44.18%~51.67%,损伤应力水平在89.04%~93.86%。强冲击倾向性煤样的起裂应力水平与损伤应力水平均高于弱和无冲击倾向性煤样,起裂应力水平与损伤应力水平从细观损伤力学角度解释了强冲击倾向性煤样易积聚高弹性应变能并产生脆性冲击破坏的能力。  相似文献   

9.
为了预测平煤一矿丁6煤层冲击倾向性,在该矿三水平对垂深800 m及其以下煤层取样进行冲击倾向性测定,利用RMT-150B型岩石力学伺服控制系统进行了弹性应变能指数WT、冲击应变能KN、动态破坏时间DT等3项指标检测,结果表明,丁组煤样属于弱中等冲击危险层,结合三水平丁6煤层结构分析,认为三水平丁6煤层无冲击危险性。  相似文献   

10.
不同煤试样冲击倾向性试验结果分析   总被引:2,自引:0,他引:2       下载免费PDF全文
郭建卿  苏承东 《煤炭学报》2009,34(7):897-902
基于5组不同产地煤样在RMT-150B岩石力学试验系统进行单轴加载、卸载压缩试验.分析结果表明:煤样的弹性变形指标KE与弹性能量指标WE之间线性相关;采用冲击能量指标WN作为煤层冲击倾向性的判别是一种过高的估计,而有效冲击能WY能够较好地反映出煤样在压缩变形破坏过程吸收和释放能量的关系,作为煤层冲击倾向性的判别比较合理;动态破坏时间tD相差悬殊,与其他冲击倾向性判定指标相关性不明显,以tD作为煤的冲击性判定指标需要谨慎.  相似文献   

11.
为研究不同含水煤样动态拉伸变形破坏过程的能量耗散规律,利用分离式霍普金森压杆(SHPB)试验系统,对不同含水煤样进行冲击加载下的动态劈裂试验,并结合超高速数字图像相关(DIC)试验系统对煤样动态拉伸破坏过程进行观测。基于试验结果分析,获得了煤样破坏过程能量耗散特性随含水率的变化规律,分析了含水率对破碎煤样分形维数的影响。研究结果表明,冲击载荷下应力波是煤样内部大量微损伤结构及原生孔隙、空隙损伤演化的主控因素,煤岩体破碎是一个能量吸收与耗散的过程,随着冲击载荷的增加煤样耗散能密度呈线性增大,但当入射能较小时煤样耗散能密度值相差不大;试样分形维数随加载气压的增加而增加,且增加速率有减小趋势,同种加载气压下,饱和煤样的分形维数最大,干燥煤样的最小;煤样破坏主要以拉伸劈裂为主,破坏裂纹沿加载方向发育,率先在圆盘中部起裂,随后萌生多条次生裂纹,次生裂纹随加载气压的增大而增多,低加载气压下,劈裂裂纹在煤样中的扩展时间较长,扩展速度较慢;基于数字图像技术发现冲击载荷下饱和煤样中部出现多个主应变集中域,且范围逐渐扩大最终沿径向发育贯通。  相似文献   

12.
循环载荷下煤样能量转化与碎块分布特征   总被引:1,自引:0,他引:1       下载免费PDF全文
煤矿开采中煤体常处于反复加卸载过程,研究煤体在不同加载速率重复载荷作用下的能量转化与破坏机制对认清煤矿动力灾害本质具有指导意义。利用MTS815.03伺服实验系统,通过单轴循环加卸载试验,结合能量和分形理论,获得了不同加载速率下煤样变形破坏各阶段能量积聚、耗散和释放的转化机制及其与煤样碎块块度分布规律的内在关系,为开展重复载荷作用下煤岩破裂响应及破坏机制的研究提供依据。试验结果表明:煤样能量转化具有明显的阶段性特征,可分为能量初始积累阶段、能量加速积累阶段和能量快速耗散阶段。煤样破坏前耗散能所占比例经历了高—低—高的过程,而弹性能则相反,加载后期弹性能比例下降或耗散能比例的升高,预示着煤样进入加速破坏阶段;能量集聚和释放与加载速率密切相关,随着加载速率的增大,峰值前弹性能所占比例逐渐增加,煤样破坏前更多的能量以弹性能形式储存在煤样体内,岩石破坏后,更多的能量被释放出来,煤样破坏越剧烈,其宏观破坏形态由剪切张拉和劈裂破坏向弹射破坏过渡;循环加卸载下煤样碎块分形特征具有明显的分段性,在小于尺寸阈值范围内具有较好的自相似性特征,不同加载速率下碎块分形维数为2~3,且随加载速率的增加成线性增长;加载速率越大碎块分形维数越大,煤样破碎程度越高,大块碎块所占比例越小,煤样碎块越破碎且单块碎块质量越小,煤样发生动力灾害的危险性越大。  相似文献   

13.
宫凤强  叶豪  罗勇 《煤炭学报》2017,42(11):2852-2560
以煤岩组合体为研究对象,进行4种不同量级下的低加载率(10-3~100MPa/s)单轴压缩试验,以抗压强度、弹性模量、冲击能量指数、弹性能量指数、归一化动态破坏时间为参量,考察加载率对煤岩组合体冲击倾向性的影响。研究结果表明:随着加载率的提高,煤岩组合体的承载失效结构由煤体转化为煤岩组合体,并存在明显的临界加载率现象。煤岩组合体的抗压强度和弹性模量在临界加载率以下保持在较低值,在临界加载率以上保持在较高值;冲击能量指数随着加载率的提高先增加后减小,在临界加载率附近出现最大值;弹性能量指数随着加载率增加而提高;修正动态破坏时间在临界加载率之前降低幅度较快,在临界加载率之后缓慢下降然后趋于平稳;综合判断煤岩组合体的冲击倾向性随加载率的增加划分为两个比较明显的水平,并且在临界加载率附近表现出较为明显的冲击倾向性突变。临界加载率效应可为现场条件下确定合适的工作面推进速度提供参考。  相似文献   

14.
组合煤岩冲击倾向性特性试验研究   总被引:14,自引:2,他引:12  
煤层的冲击矿压危险性与煤岩体的结构特征关系非常密切.研究顶板-煤体-底板所构成的组合煤岩体试样变形破裂规律及冲击倾向性对于预测冲击矿压具有非常重要的实践意义.通过对组合煤岩的试验研究,得到组合煤岩试样中顶板强度越大,强度越强;组合煤岩试样的弹性模量随着煤样百分比的增加而减小.组合煤岩试样的冲击能指数随着顶板与煤样高度比值的增加而增加;冲击能指数随着煤样百分比的增加而降低;弹性能指数随着煤样百分比的增加而呈现增加的趋势.组合煤岩试样中顶板岩样厚度越厚,冲击倾向性相应就越强;组合煤岩试样中煤层厚度越大,则其弹性能指数就越大.  相似文献   

15.
基于煤的冲击倾向性测定方法进行预制钻孔煤样单轴加载试验,研究钻孔煤样的冲击倾向性变化规律,引入破碎颗粒分形维数与新增表面积,分析钻孔煤样破碎过程中的能量耗散规律。结果表明:(1)钻孔使试样以剪切劈裂破坏形式转变为在孔洞两侧孕育、融合裂隙并在岩桥之间产生贯穿裂纹的破坏形式,同时伴随塌孔现象。随钻孔排数增多,钻孔试样呈现出应力峰前塑性损伤逐渐增大,峰值强度降低、积聚弹性能减少,峰后破坏耗时延长、耗能提升的趋势,且单轴抗压强度、冲击能量指数、弹性能量指数均逐渐降低,动态破坏时间显著升高,冲击倾向性逐渐减弱。(2)试样破碎颗粒分形维数与新增表面积具有良好的负相关性:试样破碎程度越低,分形维数越高,新增表面积越小。(3)试样应力峰前能量的输入、耗散与新增表面积无明显关系。峰后能量释放及耗散规律与破碎颗粒新增表面积变化规律一致,新增表面积越大则峰后耗能越多。受加载速率及钻孔布置影响峰后能量差值与新增表面积变化呈"U"形变化趋势。钻孔减缓了试样峰后能量释放与能量耗散速率,且二者降低幅值较为相近,单孔试样降低约17.0%,双孔试样降低约68.3%,三孔试样降低约70.8%。钻孔卸压可以降低峰前积聚的应...  相似文献   

16.
煤层冲击倾向性试验研究   总被引:4,自引:0,他引:4  
采用MTS对山东某矿3下煤进行了煤层冲击倾向性试验研究,通过对冲击能量指数、弹性能量指数和动态破坏时间3个煤层冲击能量指标的试验和分析,得出煤层具有较弱的冲击倾向;结合实际采矿条件,应加强冲击地压的预测预报,以保证矿井的安全生产。  相似文献   

17.
冲击载荷作用下煤岩破碎与耗能规律实验研究   总被引:2,自引:0,他引:2  
为了探索煤岩在冲击过程中的破坏特征和能量耗散规律,利用Φ75 mm霍普金森压杆(SHPB)实验装置,对煤岩试件进行不同应变率条件下的冲击压缩实验,分析了冲击加载速率对煤岩破碎耗能和块度分布的影响。实验结果表明:在实验应变率范围内,随着子弹速度的提高,应变率和应力波携带的能量均呈线性增长,而煤岩破碎耗散能则呈指数上升。通过对实验碎块进行块度分维,发现随着应变率的提高,试件的耗散能密度快速增大,煤岩碎块的分形维数就越大,块度越细,破坏的程度越剧烈。分形维数与应变率及耗散能密度之间呈对数增长的关系,即分形维数增大的趋势变缓。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号